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Abstract

Matching problems are ubiquitous, as they arise in school choice, college admission, job markets,

or even refugee resettlement. The literature about matching historically focuses on efficiency and

stability, but recently interest has been growing around fairness questions. This thesis aims to

contribute to this emergent work. Assume that a population is divided into groups, representing

different demographics, and the aim is to treat all groups fairly when choosing a matching. I

consider various definitions of fairness towards those groups (a concept called group fairness),

and which parameters of each studied model play a role in the existence or the optimality of a

fair matching. In particular, I study the trade-off between fairness and efficiency, defined as the

size of the matching when there are no preferences, or the satisfaction of agents when there are

preferences. In the setting with no preferences, I propose an original geometric representation of

the problem that allows me to give conditions for the existence of a matching that is maximal and

fair, and when it does not exist, I provide tight bounds on the ratio between the size of the largest

matching and the size of the largest fair matching (I call this ratio the Price of Fairness). In the

setting with preferences, that I model as a college admission problem with students on one side and

colleges on the other side, I study the role of the correlation between colleges’ rankings of students.

I show that correlation improves the efficiency of the stable matching. Moreover, when different

groups have different levels of correlation in their rankings by the colleges, it creates disparities in

each group’s rate of students that remain unassigned, even when each college’s individual ranking

is completely fair towards each group. I also show that when colleges’ rankings are fair, there is no

trade-off between efficiency and fairness, in the sense that both can be achieved simultaneously.
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Résumé

Les problèmes d’appariement sont omniprésents, dans les choix d’école, les admissions dans

l’enseignement supérieur, le marché du travail, ou encore l’installation de réfugiés. La littérature,

sur l’appariement s’est historiquement concentrée sur les questions de l’efficacité et de la stabilité,

mais il y a depuis peu un intérêt grandissant pour les questions d’équité. Cette thèse a pour

objectif de contribuer à ce nouveau champs de recherche. En supposant qu’une population est

divisée en groupes, qui peuvent représenter différents groupes démographiques, le but est de les

traiter équitablement au moment de choisir un appariement. J’étudie différentes notions d’équité

entre les groupes, et quels sont les paramètres de chaque modèle étudié qui influencent l’existence

ou l’optimalité d’un appariement équitable. En particulier, je m’intéresse au compromis entre

équité et efficacité, définie comme la taille de l’appariement dans les problèmes sans préférences ou

la satisfaction des agents dans les problèmes avec préférences. Dans le modèle sans préférences,

je propose une représentation géométrique originale du problème qui permet de donner des

conditions à l’existence d’un appariement qui soit à la fois de taille maximale et équitable, et

quand ce n’est pas le cas je donne des bornes étroites sur le ratio entre la taille d’un appariement

maximal et la taille du plus grand appariement équitable. Dans le cas avec préférences, que je

modélise comme un problème d’admission à l’université où les agents d’un côté sont des étudiants

et de l’autre des universités, j’étudie le rôle de la corrélation entre les classements que chaque

université fait des étudiants. Je montre que la corrélation améliore l’efficacité de l’appariement

stable. De plus, quand différents groupes ont des niveaux de corrélation différents dans leurs

classements par les universités, cela crée des différences de taux d’admission entre ces groupes,

même quand le classement de chaque université pris individuellement est parfaitement équitable.

Je montre également que quand les classements de chaque université sont équitables, il n’y a pas

de compromis entre efficacité et équité, dans le sens où ces deux objectifs peuvent être atteints

simultanément.
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Decision-makers are often faced with the intricate task of optimizing the allocation of potentially

scarce resources or opportunities among a population. This challenge is faced in real-world ap-

plications such as dispatching students to universities [GS13], selling goods in markets [CS98],

granting loans to businesses [HRW00], or displaying online advertisement [Meh13]. Many of

these allocation problems can be framed as matching problems, a theoretical model based on

graph theory extensively studied in the economics [EIV23], operations research [Der88], and com-

puter science literature [Nis+07]. The main goal is usually to efficiently find a “good” matching,

where “good” is understood as maximizing some form of social welfare, for example matching the

maximum number of individuals.

Outcome inequalities for different demographic or social groups are ubiquitous, for example, in

college admission, job assignment, or investment allocation. [AKR22] find that Asian-American

applicants have lower admission chances at Harvard than white applicants for a similar academic

record, [NR19] find significantly lower inflows in female-managed mutual funds than in male-

managed mutual funds, and [BM04] find race-based discrimination in callback decisions by job

advertisers. Consequently, the sources of observed outcome inequalities remain the subject of

frequent and continued controversy and political debate.
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Matching problems, however, can also be highly sensitive. For instance, the European Union has

recently proposed the creation of a job market matching platform between employers and migrants

(European Commission press brief [Com23]) to address labor shortage. Migrants can belong

to different demographic groups defined by sensitive or protected attributes such as age, race,

gender, or wealth; and it is essential that matching decisions preclude discrimination across such

groups. Hence, for such complex decision-making problems the definition of “good” matching

cannot purely be based on utility requirements: ethical, political and legal considerations must

be taken into account, and careful policies and allocations have to be designed to avoid harmful

impact due to various forms of discrimination. In a similar vein, the global refugees resettlement

crisis has reached new heights with more than 2 millions projected resettlement needs in 2023,

a 35% increase from 2021 and 2022 according to the UNHCR [Ref23]. As this is a pressing

issue that affects increasingly larger populations, the way refugees are assigned to resettlement sites

needs to be addressed carefully. This problem has recently received attention from the matching

community (see [DKT23a] and subsequent related works [Fre+23; Aha+21]). Again here, issues

of discrimination across different demographic groups of refugees need to be addressed, be it for

legal, ethical, or political reasons.

In this thesis, I
1

look into the fairness aspects of matching problems, and the potential trade-off

between fairness and efficiency. In this first chapter, I introduce the scientific context of the thesis,

as well as the fundamental technical elements. I first recall fundamentals of graph and matching

theory, then explore the different meanings of the word "fairness" in mathematics, computer

science and economics. Finally, I discuss the existing related work on group fairness in matching,

give an outline of the content of this thesis, and explain how it fits in this literature.

1.1 Background: Matching

A matching problem is a situation where a central authority or clearinghouse has to make pairs

from a pool of objects or agents. Matching theory has emerged as a part of graph theory in

the beginning of the 20th century, with seminal results from Hall [Hal35] and Kőnig [Kőn31].

Matching became an important subject in combinatorial optimization due to its link with fun-

damental results of optimization theory (notably, Hall and Kőnig theorems are precursors of

the max-flow/min-cut theorem, which is itself a special case of the duality theorem for linear

programming). The main purpose of the classical results in matching theory is to find matchings

of maximal size [Wes18; Blu90; MV80; GT91].

As described by Roth and Sotomayor [RS92], the history of two sided matching starts during

the 1940’s, when the Association of American Medical Colleges (AAMC) tried to find a way

to control the competition among hospitals for medical interns. Since there were more open

1

The introduction and conclusion of this thesis are written with the singular pronoun "I" as they are my personal

work. The chapters, being based on articles written with co-authors, are written with the plural pronoun "we".
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positions than candidates, hospitals were fighting to enroll the best students, and they tried to

do so by starting their admission process before the other hospitals. After a few years, hospitals

had ended up recruiting interns almost two years before the beginning of the internship. The

problem was fixed by keeping students’ academic records confidential until a few months before

the internship. However, the new problem was that when a student knew they were admitted to

an hospital, but also on waiting list at another one they preferred, they were inclined to wait until

the last moment before accepting their admission in case they would receive an offer from the

hospital they preferred. Following this, students were given ten days to answer an offer, then eight,

up to the point where students had only twelve hours to answer, and were forbidden to have a

phone call during these twelve hours, and hospitals as well. This example illustrates the problems

that arise when an admission process involving several competing hospitals/colleges/companies

is not performed in a centralized way. The first algorithm addressing this problem since known

as the college admission problem was proposed in 1962 by Gale and Shapley [GS62]. Their

seminal work opened a new branch of matching theory, this time linked to game theory rather

than combinatorial optimization. The college admission problem has been extensively studied

[Rot86; RS92; APR09], as well as many variants adapted to similar problems. Indeed, situations

where agents from two sides need to be matched according to their preferences are ubiquitous:

students and universities [GS62], doctors and hospitals [NRM], internet users and servers [MS15],

or even rabbis and congregations [BP03].

1.1.1 Definition and properties

Definition 1.1 (Graph). A graph is a couple G = (V,E), where V is a finite set, the elements of

which are called vertices, andE ⊆ V × V , the elements of which are called edges.

An example of a graph is given in Figure 1.1. If every vertex in the graph is connected to all other

vertices, I say that the graph is complete.

A

B

C

D

E

F

Fig. 1.1: Example of a graph with six vertices and seven edges.

Definition 1.2 (Matching). We say that µ ⊆ E is a matching if each vertex in V belongs to at

most one edge in µ.

A matching is simply a set of edges that do not share any endpoints. If a vertex v belongs to an

edge in a matching µ, I say that v is matched in µ. Figure 1.2 shows two different sets of edges

1.1 Background: Matching 3



A

B

C

D

E

F

A

B

C

D

E

F

Fig. 1.2: Left: the two thick blue edges form a matching because no vertex is used more than once. Right:

the three thick red edges do not form a matching because vertex A is used twice.

on the same graph, one that verifies the definition of a matching and one that does not. We call

M(G) the set of all possible matchings on G, and simply writeM, omitting the dependence on

G, when there is no ambiguity.

Proposition 1.1. M is downward closed, i.e., if µ ∈M and µ′ ⊆ µ, then µ′ ∈M.

In other words, if I remove edges from a matching it remains a matching. However, adding edges

may violate the definition of a matching, so finding large matchings is a non-trivial problem.

Definition 1.3 (Maximal and maximum matchings). A matching µ is:

• maximal if there is no matching that contains µ other than itself.

• maximum if no matching has a strictly larger cardinality.

A

B

C

D

E

F

A

B

C

D

E

F

Fig. 1.3: Left: the highlighted matching is maximal; no edge can be added without using some vertex

twice. Right: the highlighted matching is maximum; there is no larger matching on this graph.

By definition, there always exist at least one maximal matching (that might be the empty set). A

graph might have several maximal matchings, and maximal matchings might even be of different

size. On the other hand, there always exists a maximum matching, and there might be more than

one, but contrarily to maximal matchings they all have the same size. Figure 1.3 gives examples of

maximal and maximum matchings on the same example graph as I used before.

Proposition 1.2. If µ is a maximal matching, then every edge inE has an endpoint in common
with an edge in µ.

4 Chapter 1 Introduction: Scientific background and related literature



Proof. Suppose that some edge e has no endpoint in common with any edge inµ, thenµ∪{e} ∈
M, which contradicts µ’s maximality. ■

Definition 1.4 (Perfect matchings). A matching µ is:

• perfect if all vertices are matched.

• near-prefect if only one vertex is not matched.

Clearly, a perfect matching can only exist if V has an even cardinality and a near-perfect matching

can only exist if V has an odd cardinality. In either case, there might exist no perfect (or near-

perfect) matching. When they exist, perfect and near-perfect matchings are maximum and thus

maximal.

1.1.2 Finding maximum matchings

The simplest algorithm to find a maximum matching in any graph is called the Blossom algorithm

and was proposed by Edmonds [Edm65]. It relies on the concept of augmenting paths.

Definition 1.5 (Paths). A path is a sequence of edges (e1 = (u1, v1), ..., ek = (uk, vk)), for

any k ∈ N∗
, such that for all i ∈ [k − 1] := {1, . . . , k − 1}, vi = ui+1, and for all i, j ∈ [k],

ui ̸= uj .

• A path that ends on the vertex it started on (vk = u1) is called a cycle.

• Given a matching µ, a path is said to be alternating if at least one of its extremities is

unmatched and its edges are alternatively in µ and not in µ.

• An alternating path such that the first and last edges of the path are inE \ µ is called an

augmenting path.

A

B

C

D

E

F

A

B

C

D

E

F

Fig. 1.4: Left: the highlighted edges form a path. Right: the highlighted edges form a cycle.

A path and a cycle are illustrated on Figure 1.4. Given a matching µ and an augmenting path P , I

can find a larger matching simply by removing from µ the edges that are in P and adding all edges
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in P that were not in µ. Formally, µ′ = (µ \ P ) ∪ (P \ µ) is a matching that has exactly one

more element than µ. Figure 1.5 illustrates this: starting from the blue matching µ of size two, I

can find an augmenting path P as shown on the right, and removing the edges that are in P ∩ µ
and replacing them by those that are in P \ µ gives a matching larger than µ by one edge.

A

B

C

D

E

F

A

B

C

D

E

F

Fig. 1.5: The highlighted blue edges are a matching µ. Left: the path formed by µ and the dashed orange

edges is an alternating path for µ. Right: the path formed by µ and the dashed orange edges is

an augmenting path for µ, i.e., an alternating path that starts and ends with edges not in µ.

Starting from some matching, I can then greedily look for augmenting paths to increase its size.

This leads to the Blossom algorithm (see Algorithm 1).

Algorithm 1: Blossom algorithm

Input:
Graph G and matching µ
Output:
A maximal matching

1 while There exists an augmenting path do
2 Augment µ along any augmenting path

3 end
4 Return µ.

To prove that this algorithm always output a maximum matching, I only need Berge’s theorem

[Ber57]:

Theorem 1.3 (Berge, 1957). A matching is maximum if and only if it has no augmenting path.

Proof. Let µ be a matching. Suppose there exists an augmenting path, I already showed that it

implies the existence of a larger matching. Conversely, suppose there exists a larger matching µ′
.

Consider the graph G′ = (V,E′) withE′ = (µ \ µ′)∪ (µ′ \ µ), called the symmetric difference

between µ and µ′
. This graph consists of isolated vertices and alternating paths. If some of those

paths are cycles, then they are of even length since they are alternating. Since µ′
is larger than µ

there must exist a path of odd length, that starts and ends with edges from µ′
, which is therefore

an augmenting path, concluding the proof. ■

This result proves that the Blossom algorithm always outputs a maximum matching, because it

stops when it finds no augmenting path, meaning that its current matching is maximum. The
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operation of finding an augmenting path is not trivial but efficient methods exist, which will not

be detailed here. The overall complexity of this algorithm isO(|E||V |2).

In this thesis, I will focus on a specific class of graphs, bipartite graphs, for which finding maximum

matchings happen to be easier.

Definition 1.6 (Bipartite graph). We say that a graph G is bipartite if the set of vertices can

be partitioned into two partsU and V such that all edges consist of one element ofU and one

element of V .

U V

u1

u2

u3

v1

v2

v3

v4

Fig. 1.6: Example of a bipartite graph.

We write bipartite graphs asG = (U, V,E). An example of a bipartite graph is shown on Figure 1.6.

To find a maximum matching in a bipartite graph I can use the Ford-Fulkerson algorithm [FF56]

(see Algorithm 2). This algorithm is originally used to find the maximal flow between two vertices

labeled as source and sink, but it can be used to find maximum matchings by adding a source

connected to all edges inU and a sink connected to all edges in V (U and V play interchangeable

roles here).

Algorithm 2: Ford-Fulkerson algorithm for bipartite graphs

Input:
Bipartite graph G
Output:
A maximum matching

1 Initialization:

2 Add a vertex s and connect it to all vertices inU , and a vertex t connected to all vertices in V .

Change all edges to be arrows, pointing from s toU , fromU to V and from V to t.
3 while There exists a path from s to t following arrows do
4 Find a path P from s to t following arrows

5 For every arrow in P , invert the direction of the arrow

6 end
7 Return the arrows going from V toU .

At the beginning of the algorithm, all arrows go fromU to V ; the maximum matching is given by

the arrows that are in the opposite direction when the algorithm stops, as illustrated in Figure
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s t

U V
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v2

s t

U V

u1
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v1

v2

s t

U V

u1

u2

v1

v2

s t

U V

u1

u2

v1

v2

s t

Fig. 1.7: Illustration of the Ford-Fulkerson algorithm. Top row: initialization, the initial bipartite graph

is on the left, on the right I add the source s and the sink t, and turn edges into arrows from left

to right. Middle row: first iteration, a path from s to t is found through the edge (u1, v1) (left),

I invert the arrows along it (right). Bottom row: second iteration, a new path is found (left),

once again I invert the arrows(right). There is no more paths from s to t, the algorithm stops

and the maximum matching found is ((u1, v2), (u2, v1)) as given by the arrows going from V
toU .

1.7. This algorithm converges in O(|E|(|U | + |V |)), which seems faster than the Blossom

algorithm. However, the blossom algorithm when used on a bipartite graph also converges in

O(|E|(|U | + |V |)) (instead ofO(|E|(|U | + |V |)2) in the general case) because augmenting

paths are easier to find in bipartite graphs. In practice, even though the convergence time is the

same, Ford-Fulkerson is often preferred for bipartite graphs because it is much easier to implement

(finding a path from s to t following arrows is more straightforward than finding an augmenting

path). More complex algorithms have been developed since with better complexity, notably the

Hopcroft–Karp–Karzanov [HK73; Kar73] algorithm that achievesO(|E|
√
|U |+ |V |), or the

Chandran-Hochbaum algorithm [CH11] that achievesO
(
min{|U |k,E}+

√
kmin{k2, E}

)
,

where k is the size of the maximum matching.

1.1.3 Two-sided matching

The matching model I introduced so far is quite generic and can be used to model many situations,

but in many problems from computer science and economics there is a feature that I did not

yet take into account: preferences. So far I looked for matchings as large as possible, assuming

that all pairs edges of the graph were equally good to the matching, but that might not always

be the case, especially when vertices represent people or institutions. In this section, I introduce

the classical model of bipartite matching with preferences. We consider that vertices on each side

have preferences over the vertices of the other side, that is why I call this two-sided matching,
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as opposed to a model where only one side has preferences and the other is indifferent (which is

called one-sided matching and will not be considered in this thesis).

Consider a mixed doubles tennis tournament. There are n men and n women, and one needs

to make teams taking into account that each player p has preferences≻p over the players of the

other gender they want to be teamed-up with, which is a total order with no ties. There is an

edge between two players of opposite genders if and only if they both prefer being teamed-up

rather than remaining alone. Each player can only be matched to at most one player (I call this

model one-to-one matching). It is obvious that it is often impossible to assign to each player their

favorite partner if the preferences do not perfectly line up. Then, which matchings respect players

preferences and which do not? An answer was proposed by [GS62] with the notion of stability.

Definition 1.7 (Stable matching). Let µ be a matching.

1. If there exists two players p, p′
of opposite genders who are connected by an edge and who

are both not matched, the matching is said wasteful.

2. If players p and p′
are connected and both prefer each other rather than their respective

matches (or if them is unmatched), they experience justified envy.

A pair of players in situation 1. or 2. is called a blocking pair. If µ contains no blocking pair, it is

called stable.

Women Men

Iga

Serena

Amélie

Novak

Carlos

Roger

C≻N

N≻R≻C

N≻R

S≻A≻I

I≻S

A≻S

Women Men

Iga

Serena

Amélie

Novak

Carlos

Roger

C≻N

N≻R≻C

N≻R

S≻A≻I

I≻S

A≻S

Fig. 1.8: Example of a two-sided, one-to-one matching problem. Left: the matching in blue (IC, SN,

AR) is stable. Right: the matching in blue (SR, AN) is unstable because of two blocking pairs,

represented by the dashed red lines. One is between Serena and Novak who would prefer

being matched together (justified envy), the other one is between Iga and Carlos who could be

matched together but are both unassigned (waste).
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An illustration of a two-sided matching problem is shown in Figure 1.8, with an example of a stable

matching on the left and an unstable matching on the right. Notice that a wasteful matching is

equivalent to a matching that is not maximal, since it is possible to add an edge. The notion of

stability is named this way because if two players form a blocking pair, then they will want to team

up and leave their current teammate.

The question that naturally arises after defining such a property is whether there always exists a

stable matching. The answer was also given in [GS62]

Theorem 1.4 ([GS62]). There always exists a stable matching.

To do so, they propose the Deferred Acceptance algorithm (shortened DA) that outputs a stable

matching and prove that the algorithm always terminate (see Algorithm 3).

Algorithm 3: Deferred Acceptance algorithm (one-to-one, women-proposing)

Input:
Bipartite graph G with preferences

Output:
A stable matching

1 while Some woman is not matched and has not been rejected by all men connected to her do
2 Every woman tries to match with the man she prefers among those that are connected to

her and have not rejected her yet. Every man that receives proposals temporarily keeps

the partner he prefers among those who are proposing and his current one if he already

had one.

3 end
4 Return the obtained matching.

This version of the algorithm is called "women-proposing, men, disposing" or shorter "women-

proposing". Obviously the roles of men and women can be reversed to obtain the "men-proposing"

version of the algorithm. An illustration of the steps of the algorithm is shown in Figure 1.9.

To show that Algorithm 3 produces a stable matching, I only need the following observation:

suppose there exists a blocking pair (p, p′) where p is the woman. Since p prefers p′
to her match,

it means that she proposed to him at some point and he declined. If he declined, it was necessarily

because he preferred his partner at the time to p. Moreover, throughout the algorithm, men only

switch partners for ones they prefer, so he necessarily prefers his final match to p, so they cannot

form a blocking pair.

To prove that there always exists a stable matching, I now only need to prove that the algorithm

always terminate.

Proof. The algorithm terminates when every woman either has a partner or has been rejected by

every potential partner. This implies that at every step, if it has not terminated, some woman is
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A≻S
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Serena

Amélie

Novak
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C≻N

N≻R≻C

N≻R

S≻A≻I

I≻S

A≻S

Fig. 1.9: Illustration of the execution of the Deferred Acceptance algorithm. Left: first iteration, every

woman proposes to her preferred man. Serena and Amélie both propose to Novak, who prefers

Serena so he keeps her. Right: second iteration, Iga and Serena do not propose since they

are matched for now, Amélie proposes to her second choice Roger, who accepts since he was

unassigned. Every woman is matched so the algorithm stops and the stable matching (in blue)

is (IC, SN, AR).

not matched and has a man to propose to, so there is at least one proposal sent at each step. The

number of proposals is bounded by n2
since each woman sends at most n proposals. Since the

number of proposals sent is an integer, strictly increasing, and bounded, the algorithm necessarily

terminates. ■

Now that we understand stability and how to find stable matchings, I can extend the model to a

more general situation. Suppose that instead of tennis players, I need to match a set of students

S to colleges. Similarly, all students have preferences over the colleges they find acceptable, and

colleges have priorities over students (I use two different words - preferences for students and

priorities for colleges - to make future discussions clearer and not too heavy). Each student can

be matched to at most one college, however each collegeC can admit several students, at most

a number qC . This kind of problem is called many-to-one matching, as opposed to the tennis

tournament which was one-to-one matching. Stability is defined in the exact same way as before:

there is waste if a college has an empty seat and some student would prefer this college to their

current match (including if they are unmatched), and there is justified envy if some student

would prefer a collegeC to their current one and has a better rank atC than a student currently

attending.

The Deferred Acceptance algorithm needs only to be slightly modified to accommodate for this

change (see Algorithm 4). Since the proofs of correctness and termination of this version of the

algorithm are almost identical to the previous one they are omitted. Figure 1.10 illustrates the steps

of the algorithm.
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Algorithm 4: Deferred Acceptance algorithm (many-to-one, students-proposing)

Input:
Bipartite graph G with preferences, and capacities on one side

Output:
A stable matching

1 while Some student is not matched and has not been rejected by all colleges connected to them do
2 Every student applies to the college they prefer among those that are connected to them

and have not rejected them yet. Every college that receives applications temporarily

enrolls, in the limit of its capacity, the students it prefers among those it had previously

enrolled and those that are now applying.

3 end
4 Return the obtained matching.

Students Colleges

Harry

Ronald

Hermione

Draco

Griffindor

Slytherin

G≻S

G≻S

G≻S

S≻G

Ha≻He≻R≻D

D≻Ha≻R≻He

Students Colleges

Harry

Ronald

Hermione

Draco

Griffindor

Slytherin

G≻S

G≻S

G≻S

S≻G

Ha≻He≻R≻D

D≻Ha≻R≻He

Fig. 1.10: Illustration of the execution of the Deferred Acceptance algorithm. We assume that the graph

is complete and therefore do not represent all edges for clarity, instead at each step I only draw

the current matching and applications. Left: first iteration, all students apply to their first

choice. Harry, Ronald and Hermione all apply to Griffindor but there are only two seats, so

Ronald is rejected. Right: second iteration, Ronald applies to Slytherin, but Draco is already

there and Slytherin prefers Draco to Ronald, so he is rejected. Every students is either matched

or has been rejected from all colleges, so the algorithm stops and gives the stable matching (in

blue)((G, (Ha, He)), (S, (D))).

Remark 1.1. One may wonder whether agents could get a better outcome from the algorithm

by misreporting their preferences. This question was answered by Dubins and Freedman [DF81]

and Roth [Rot82]: with students-proposing DA, no student can improve their outcome by

misreporting their preferences (and conversely for colleges with colleges-proposing DA). We say

that the mechanism is strategy-proof for students (respectively for colleges). However, the other

side can always manipulate. Roth further proved in [Rot82] that no mechanism that outputs a

stable matching can be strategy-proof for both sides.

We now state some fundamental results regarding the structure of the set of stable matchings. We

state them with the students and colleges terminology but they also apply to one-to-one matching

problems.

Theorem 1.5.
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• [GS62]: The matching given by students-proposing DA is optimal for students, in the sense
that every student weakly prefers2 this matching to any other stable matching. The converse is
true for colleges-proposing DA.

• [Knu76]: The students-optimal stable matching is pessimal for colleges (every college weakly
prefers3 any stable matching to this one). The converse is true: the colleges-optimal stable
matching is pessimal for students.

Definition 1.8 (Join and meet). Letµ andµ′
be two stable matchings. We define the join operator

∨ that gives an allocation where each student gets their favorite partner between those they get in

µ and µ′
. Similarly, the meet operator ∧ gives every student their least favorite partner between

the two matchings.

Theorem 1.6 (Conway & Knuth, [Knu76]).

• The join and meet of two stable matchings are still matchings and still stable.

• The set of stable matchings endowed with those two operators forms a distributive lattice.

A distributive lattice is an algebraic structure that has a partial order given byµ ≤ µ′ ⇔ (µ∧µ′ =
µ)⇔ (µ∨µ′ = µ′). With this partial order, the student-optimal stable matching is the maximal

element of the set of stable matchings and the college-optimal stable matching is the minimal

element. For a better understanding of the structure of a lattice an example is provided in Figure

1.11

Remark 1.2. The set of stable matchings does not have a more particular structure than that of a

distributive lattice: Blair [Bla84] showed that any finite lattice is isomorphic to the set of stable

matchings of some instance of the problem.

We finally state a result describing the sets of matched and unmatched agents when the numbers

of students and seats are different.

Theorem 1.7 (McVittie & Wilson [MW71], Roth [Rot84; Rot86]). For a given instance of the
college admission problem,

1. the sets of matched and unmatched students are the same in every stable matching,
2

A matching is weakly preferred to another by a student if they get either the same or a better outcome.

3

A matching is weakly preferred to another by a college if it gets the same set of students, or a set that Pareto-

dominates the other w.r.t. the ranking of the college.
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Students Colleges

s

t

u

v

A

B

C

D

A≻B≻C≻D

B≻A≻D≻C

C≻D≻A≻B

D≻C≻B≻A

v≻u≻t≻s

u≻v≻s≻t

t≻s≻v≻u

s≻t≻u≻v

ABCD

BACD ABDC

BADC

BDAC CADB

CDAB

DCAB CDBA

DCBA

Fig. 1.11: Example of a college admission problem and its set of stable matchings.Left: 4 students and 4

colleges with capacity 1, each with their preferences written below them (I assume the graph is

complete and do not draw the edges for clarity). Right: the corresponding lattice of stable

matchings. Matchings are represented by which college is matched to s, t, u and v in that order,

"BDAC" for instance represents the matching ((s,B),(t,D),(u,A),(v,C)). If a matching is higher

than another, it means that the top one is preferred by all student to the bottom one. When

two matchings are on the same level, the one on top of them is their "join" and the one below

is their "meet", those relations are represented by the edges.

2. the number of unfilled seats in each college is the same in every stable matching,

3. the colleges that have empty seats get the same set of students in every stable matching.

This result shows that the only students that get different outcomes across stable matchings are

those matched to colleges that fill all their seats. Unassigned students and those matched to colleges

with remaining seats will get the same outcome in every stable matching.

1.2 Background: Fairness

Fairness is defined as "the quality of treating people equally or in a way that is reasonable"
4
.

This definition is quite vague, and has lead to very different interpretations in many areas of

computer science and economics every time researchers tried to study the fairness of a situation

or to impose fairness constraints to a mechanism. In this section, I give an overview of the most

common fairness notions used in the scientific literature and classify them in two main categories,

individual fairness and group fairness. We finally introduce in more detail a particular source

of unfairness (related to group fairness), called statistical discrimination.

4

Oxford advanced learner’s dictionary
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1.2.1 Individual fairness

Individual fairness names a class of fairness notions related to merit. Rooted in philosophy, it

can be traced back to Aristotle, “equals should be treated equally and unequals unequally”. The

main idea is that similar agents should get similar outcomes, and was more recently imported in

economics theory by Young [You94] and Roemer [Roe98]. Since then, it has been considered by

many authors in the economics and computer science literatures.

In the past decade, stemming from the AI literature, the most used framework has been the one

proposed by Dwork et al. [Dwo+12]. Let S be a set of individuals, and A the set of possible

outcomes. Define a distance between individuals d : V × V → R. Agents are mapped to

distributions of outcomes by µ : V → ∆(A), and D : ∆(A) × ∆(A) → R is a distance

between distributions of outcomes. They then propose the following definition.

Definition 1.9 (Individual fairness). Given two distances d and D between individuals and

distributions of outcomes respectively, a mappingM : V → ∆(A) is said individually fair if it is

1-Lipschitz, i.e., if ∀x, y ∈ V ,D(M(x),M(y)) ≤ d(x, y).

Indeed, this definition is a natural formalization of the idea that similar agents have to get similar

outcomes. However, this framework leaves much freedom in the choice of the distances d andD.

In order to obtain a relevant notion of fairness, those functions must be wisely chosen. Notice

thatA could represent absolute outcomes, or individual-dependent utilities. For instance, in a

matching problem, two students getting the same outcome could either mean getting the same

college, or both getting their k-th choice in their respective preference lists for some k (as is done

in [Dev+23]), depending on howA is defined.

While many authors who studied individual fairness claim that it "captures the intuitive notion of

fairness" [Dwo+12] and prevents the disparate treatment of individuals from different demographic

groups (cf. next subsection "Group fairness"), it appears to be only partially true. As noted by

Fleisher [Fle21], there are several limitations to individual fairness. He first notices that individual

fairness does not encompass efficiency, in the sense that not allocating any resource to any one is

individually fair, but very wasteful. Second, the similarity metric used to compare individuals is

designed by humans, and can therefore encompass bias towards some groups of individuals. In

the same vein, designing such a metric requires to choose which features are relevant to compare

individuals and which are not, which requires a moral judgment over what constitutes fairness,

making the definition circular.

Those observations indicate that individual fairness alone is not sufficient to encompass the

common idea of fairness. Fleisher’s first observation tells us that we need to pay attention to the

efficiency of mechanisms since individual fairness offers no guaranty on this side. Even more
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importantly, we must consider fairness notions that ensure that different demographic groups are

treated fairly independently of human bias.

1.2.2 Group fairness

To quantify discrimination towards a group of individuals by a mechanism, it seems quite natural

to look at how they are treated as a group by this mechanism compared to other groups or the

global population. The definition of treatment is dependent on the context and of course subject

to interpretation, but should relate to some measure of welfare or satisfaction, or in the most

simplistic case a binary positive/negative outcome.

The machine learning community has taken an interest in the past few years in this question,

especially in the context of classification, i.e., the binary setting I just mentioned. Several metrics

have been introduced in this context to measure unequal treatment between groups, almost all of

them based on the error rates of a classifier. Let me briefly describe this model.

Consider a population of individuals S, partitioned in groupsG1, . . . , GK . Every individual s

has a true label ys ∈ {−1, 1}. A mechanism has to classify the individuals without knowing

their true labels, for each one it outputs a predicted label ŷs. The mechanism, called a classifier,

can be compared to the ground truth by some metrics.

Definition 1.10. Given a set S of individuals with true labels ys and predicted labels ŷs,

• the True Positives rate is P(ŷs = 1|ys = 1), the True Negatives rate is P(ŷs =
−1|ys = −1),

• the False Positives rate is P(ŷs = 1|ys = −1), the False Negatives rate is P(ŷs =
−1|ys = 1),

• the Predicted Positives rate is P(ŷs = 1), the Predicted Negatives rate is P(ŷs = −1).

For a groupG ⊂ S, I define the same measures conditioned on belonging toG, e.g.,G’s True

Positives rate is P(ŷs = 1|ys = 1, s ∈ G).

Those metrics are illustrated in Figure 1.12. By comparing those metrics between groups, I can

quantify the differential treatment. A growing literature is dedicated to the design of machine

learning-based classifiers that have, as a constraint, that one or several of those metrics must be

equal across groups. Each combination of metrics leading to a different fairness constraint, I here

list the most commons:
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Fig. 1.12: The different types of classification outcomes

• Demographic Parity: equalize Predicted Positive rates [BS20; Eme+22].

• Equal Opportunity: equalize True Positive Rates [Har+16; BS20].

• Equal Odds: equalize True Positive and False positive rates [BS20].

Notice that Demographic Parity does not require to know the true labels to be computed. Actually,

it does not even require the existence of some ground truth, and can therefore be applied to any

situation that involves selecting people, even when the selection is arbitrary.

Notably, Barocas et al. [BHN19] have designed a framework that encompasses all the fairness

constraints that can be defined based on those metrics. Chouldechova [Cho17] and Kleinberg

[KMR16] have proved a fundamental impossibility result: outside of some trivial settings, it is

impossible to simultaneously equalize False Positive rates, False Negative rates, and Predicted

Positive rates across groups.

Outside of machine learning, those definitions are also widely used, especially Demographic Parity.

The reason is that in many situations the outcome is binary: being admitted to a university, hired

in a company, getting a grant or a loan, and many others. In all of those situations, it is quite

straightforward to compute the acceptance rate inside each group and to compare them to evaluate

if there is unequal treatment.

1.2.3 Statistical discrimination

In economics, when studying discrimination, a distinction is often made between taste-based
discrimination and statistical discrimination. Taste-based discrimination occurs when a

decision maker gives on average worse outcomes to specific group because of a negative opinion

they hold about this group. On the other hand, statistical discrimination occurs when a decision

maker or mechanism has no intentional bias towards a group but still discriminates against them

because of imperfect information.

1.2 Background: Fairness 17



Statistical discrimination was first proposed by economists Phelps [Phe72] and Arrow [Arr73]. The

Arrovian model assumes that some groups in the population of workers expect to be discriminated

against, and therefore have a low incentive to invest time, effort or money in their applications.

On the other hand, some groups do not expect to be discriminated, or even believe they will be

advantaged, and therefore invest more in their applications since they have higher chances of

being hired. As a result, companies will optimally hire those who have invested, reinforcing the

prior belief of discriminated and advantages groups. On the other hand, Phelps models statistical

discrimination as a result of noisy estimations of candidates qualities. If a decision-maker has

very precise information about the quality of applicants from group 1, and very little information

about the quality of candidates from group 2, it might lead to a different treatment of the two

groups even when the latent qualities are equally distributed across groups.

The Phelpsian model has recently found an echo in the growing literature about discrimination

related to both the generalized use of algorithmic decision making and the controversies around

college admission in many countries. Kleinberg and Raghavan [KR18] study what they call

implicit bias, i.e., a model where every candidate has a latent quality that follows the same

distribution for every candidate, but for some group among them, the quality estimate made

by the decision maker is their latent quality divided by some constant. This leads to obvious

inequalities in the probabilities to be selected for those candidates. In the same fashion, Emelianov

et al. [Eme+20; Eme+22], followed by Garg et al. [GLM21], proposed the following simple

model for what they call differential variance. An employer needs to hire a fraction α of a set of

applicants S, partitioned in two groupsG1, G2. Each applicant s has a latent qualityWs, drawn

according to a Gaussian distributionN (0, 1). The employer only has access to a noisy estimate

Ŵs of Ws, such that Ŵs = Ws + σG(s)εs, where G(s) is s’ group, σ1, σ2 are the amount of

noise for each group, and εs ∼ N (0, 1). They consider two types of decision-makers. The

first one is called group-oblivious, because they do not take into account the noise and rank

the applicants directly from the estimates Ŵ . The second one is called Bayesian, because they

know that the estimates are noisy and do not directly use Ŵ but rather the expected value ofW

conditioned on Ŵ and the group of the applicant:

W̃s := E[Ws|Ŵs, G(s)] = Ŵs/(1 + σ2
G(s)) (1.1)

Consider the group-oblivious decision-maker. The distribution of observed qualities isN (0, 1 +
σ2

1) for groupG1 andN (0, 1 + σ2
2) for groupG2. As illustrated on the left part of Figure 1.13,

the highest values belong to the high noise group, and so do the lowest. As a consequence, if the

number of positions is less than half of the population (α < 0.5), then the high noise group

will be overrepresented in the selected applicants, otherwise it is the low noise group that will be

advantaged.

Conversely, with the Bayesian decision-maker, the distribution of observed qualities isN (0, 1/(1+
σ2

1)), so the roles are reversed: the group with the highest noise variance becomes the group with
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the lowest variance of estimated quality. By the same principle, and as represented on the right of

Figure 1.13, if α < 0.5 the low noise group will be overrepresented, and if α > 0.5 the high noise

group will be overrepresented.

This model provides an explanation to the intuition that applicants with noisier information will

be discriminated against: in many situations, the capacity is less than half of the applicants, and

the decision maker is somewhat Bayesian in the sense that candidates with low information will be

compressed to the mean value, while candidates with more information will be more likely to get

extreme grades. Emelianov et al. go on to show that applying a demographic parity constraint (i.e.,

the fraction of applicants insideG1 that are hired is equal to the fraction of applicants insideG2

that are hired) improves the utility of the group-oblivious decision-maker, with utility taken as the

sum of latent qualities of hired applicants. However, the utility of the Bayesian decision-maker

cannot be improved: they already make the optimal use of the available information.
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Fig. 1.13: Distributions of the estimated qualities for each group, with the latent qualities as a reference,

σ1 = 0.2, σ2 = 0.5. Left: Group oblivious decision-maker. Right: Bayesian decision-maker.

1.3 Related literature

In this section, I present the existing literature related to the subject of this thesis, i.e., group

fairness in matching problems, in order to understand the existing results, and what remains to be

studied. Each chapter has in addition its own introduction to complete the context and related

literature specific to that chapter.

1.3.1 Matching under fairness constraints

The bipartite matching literature has seen a rise in recent works pertaining to the conception

and deployment of fair matching algorithms that prevent discrimination: [Chi+19; Ban+23]

propose algorithms that efficiently approximate optimal fair matchings, and many authors [MX20;

MXX23; Hos+23; San+21; Ban+23; Esm+22] consider fair matching in an online setting where

individuals must be matched or discarded irrevocably once they become available.
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Works on fairness in matching with preferences have considered various affirmative action policies,

including upper and lower quotas, to reduce discrimination ([Abd05; KK15; DKT23b; Kri+22;

DPS20]). For instance, Abdulkadiroglu [Abd05] defines a variant of the classical college admission

model of [GS62], by adding the constraint that colleges cannot admit more than a certain number

of students from each group. He then defines a notion of weak stability: a blocking pair (s, C)
only counts if the college C has not reached its quota for the group of the student s. He then

proposes a very slightly modified version of the DA algorithm (cf. Algorithm 4) that outputs

the student optimal weakly stable matching, and shows that this mechanism is strategy-proof for

students.

Kamada and Kojima [KK23] developed a general framework to implement constraints of any type

in the college admission model, and in particular fairness constraints. To do this, they assume

that each college C has a feasibility set FC ⊆ P(S), i.e., they can only admit sets of students

that belong to their feasibility set. When each college’s feasibility set is a capacity constraint

(I ∈ FC ⇔ |I| ≤ qC for some qC ∈ N), then this is the classical college admission problem.

However, this framework allows to implement any constraint by explicitly specifying which sets

of students are feasible. This could for instance allow to implement budget constraint, in the

case where some students cost more money than others if admitted, e.g., disabled students, and

therefore implement fairness rules towards those students while respecting colleges’ budgets. They

show that when the constraints are not only capacity constraints, a stable matching does not

necessarily exist. They redefine a notion of weak stability by allowing waste, i.e., only justified envy

constitutes a blocking pair, not waste. They show hat a weakly stable matching always exist when

the feasibility sets are downward closed, i.e., any subset of a feasible set of students is also feasible.

They then provide two algorithms that output the student-optimal weakly stable matching, one of

them being quite close to DA. They further show that whenever the feasibility set of some college

is not downward closed, there exists a set of students preferences such that there is not weakly

stable matching, proving that downward closedness is the necessary and sufficient condition for

the existence of a weakly stable matching.

1.3.2 Fairness of the unconstrained models

Another approach to study fairness in matching problems is to investigate the mechanisms that

cause inequalities in the final matching. As we saw with statistical discrimination, inequalities do

not always result from a conscious choice of the decision maker or the creator of an algorithm. If

similar mechanisms exist in the matching setting, understanding them could lead to more efficient

ways to root out inequalities.

One of the major findings in this area is due to Karni et al. [KRY22], who show that a fair ranking

does not necessarily lead to a fair matching, in the sense of individual fairness. In their model,

colleges rankings of students contain ties. They show that when using naive extensions of DA to

this situation, including classical tie-breaking rules, students that are tied can have different out-
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come distributions, which is deemed (individually) unfair. They propose two new algorithms that

extend respectively Student-proposing DA and College-proposing DA and produce matchings

that are ε-close to a stable matching and ex-ante ε-close to a fair matching. Recently, [Dev+23]

presented a framework to study fairness in matching problems. Their approach is original in

the fact it acknowledges that the classical definition of individual fairness ensures that agents get

similar outcomes but not necessarily with respect to their preferences. Instead, they introduce a

new notion of individual fairness that states that similar agents should get resources that are in the

same position in their respective preference lists.

On the group fairness side, Bommasani et al. [Bom+22] defines a notion of systemic failure, that

measures how many applicants will get rejected by all decision-makers, as a metric describing the

harm of algorithmic monoculture (all colleges using the same algorithm to evaluate students) to

applicants. They assume that applicants belong to different groups and compute this metric on

each group separately to show that some groups suffer from higher rates of systemic failure. On

the bipartite matching side, [Chi+19] studies a model where vertices on one side of the graph are

divided into groups, and looks into which matchings respect demographic parity. Their model in

fact extends more generally to matroids, a notion I explore in more details in Chapter 2.

1.4 Purpose and structure

While the literature on matching is vast, and so is the literature on fairness, the question of group

fairness in matching problems has received less attention, and most works in this area focus on

designing algorithms that enforce some fairness constraint in an existing matching model. This

thesis provides an original theoretical analysis of the sources of unfairness that lie at the core of

matching models, of the amplitude of those inequalities, and of their dynamics with respect to

the parameters of the model.

In Chapter 2, I study bipartite matching. Like [Chi+19], we assume that vertices on one side of

the graph are partitioned into groups. We propose an original geometrical representation of the

set of feasible matchings. We then define a broad class of fairness notions, and use both geometric

and combinatorial arguments to study the Price of Fairness, i.e., the distance between the set of

maximum matchings and the set of fair matchings, for different fairness notions.

In Chapter 3, I focus on two-sided matching, and more particularly on the role played by correlation

of colleges rankings of students. We introduce a model based on copulas that allows a precise and

flexible modeling of this correlation. We then study the influence of correlation on efficiency, i.e.,

the amount of students getting their top choice, and inequality, defined as the difference in the

rates at which students from different groups go unassigned.
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I conclude with a discussion of the accomplished and remaining work, and a more general reflection

about the importance of fairness and the role of mechanism design for society.
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This chapter is based on the article [Cas+24] by Mathieu Molina, Felipe Garrido-Lucero, Simon

Mauras, Patrick Loiseau, Vianney Perchet and myself. I provided a major contribution to all the

contents presented here except Section 2.6.3 that is nonetheless included for completeness.

2.1 Introduction

In this chapter, we study the Price of Fairness in the context of bipartite matching problems

(without preferences). We focus on the Price of Fairness, a quantity that measures the loss in

utility due to fairness requirements. The Price of Fairness has been studied in other problems of

resource allocation [BFT11], kidney exchange [DPS14], and fair division [Bei+19]. We show that

certain fairness notions incur no loss of utility, while others may have a Price of Fairness bounded

or unbounded.

2.1.1 Our contributions

We consider a model of cardinal bipartite matching with agents and jobs, where fairness is required

on the agents side. The agents are partitioned intoK disjoint groups, that could for instance be

based on sensitive attributes such as gender or ethnicity. For most of the applications mentioned,

matching algorithms are deployed on a large market, hence fractional matchings can serve as good

approximations. For this reason, we mainly work (except when stated otherwise) with fractional

matchings.

First, we frame group fairness as a geometric problem, where each matching is represented by a

pointx ∈ RK wherexi denotes the number of jobs matched to agents of group i. We characterize

the set of feasible and maximum matchings as a polytope. Specifically, we show that the set

of feasible matchings when taking into account the number of agents matched per group is

a polymatroid – an intricate extension of (transversal) matroids. This implies that the Pareto

frontier of the feasible matchings in RK , the set of maximal matchings, and the convex hull of

all lexicographic maximal matchings are all equal. Hence many natural fairness notions, as for

example the leximin egalitarian rule from fair division, can be achieved with a maximal matching at

no utility loss. We also show, using again the structure of polymatroid, that such leximin optimal

fair point satisfies additional properties like minimizing the variance of utility across groups.

Second, we introducew-weighted group fairness notions, which seek to equalize the fraction of the

entitlementwi that each group receives. Compared to the leximin fairness, this stronger fairness

notion does not allow for groups to be better off than others. Weigthed fairness is quite flexible,

and can encompass many fairness concepts inspired from the fair machine learning literature, such
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as demographic paritity and equality of opportunity. In particular, we define opportunity fairness

by settingwi as the maximum number of agents from group iwho can be matched. Defining the

Price of Fairness (PoF) as the ratio between the optimum without and with fairness constraints (1
corresponds to no utility loss), we show that the worst case opportunity-PoF is equal toK − 1.

This bound is independent of the number of jobs and agents in the graph (the size of the graph),

and only depends linearly on the number of groups. As a significant consequence, any instance

with only two groups has no diminution of the maximal matching size under opportunity fairness.

Finally, we provide refined bounds under specific conditions such as (1) having a fixed ratio between

the optimum and the ideal objective or (2) having graphs sampled from an Erdös-Rényi model.

2.1.2 Further related works

Matchings and matroids In terms of techniques, our characterizations use tools from bipar-

tite matching and matroid theory [Oxl22]. In a bipartite graph, sets of left endpoints of matchings

form a transversal matroid, from which one can define the independence polytope (convex hull of

feasible sets) and the basis polytope (convex hull of maximal sets). This corresponds to a special

case of our model when groups have size 1. We show that this construction extends to arbitrary

groups size, where the (transversal) matroid becomes a discrete polymatroid [HH02], and the

independence polytope becomes a continuous polymatroid [Edm70]. Notably, our work is the

first to define this particular (discrete) polymatroid. Matroids are also used to study connected

matching problems, such as kidney exchange or college admission with reserves [SY22]. For both

settings [EF65] showed that the set of acceptable matchings (respecting reserves for college admis-

sion, individually rational for kidneys) are matroids. In the kidney problem, [RSU05] further

showed that a matching is Pareto efficient and individually rational if and only if it is a basis of the

associated matroid. As for college admission with reserves, since reserves can be used for affirma-

tive action purposes, it is an example of how matching problems with fairness constraints can be

represented by matroids. The main difference is that the matroid in [SY22] is the set of matchings

that respect the reserve rule, while in our model the matroid contains all feasible matchings and

the fairness constraints are imposed on the matroid afterwards.

Fair division An entire literature is dedicated to the fair division of items betweenK players,

with guarantees either share-based (e.g., proportionality where each players gets a 1/K fraction

of all items) or envy-based (e.g., envy-freeness where no players prefers the bundle allocated to

another player). In mathematics, fair division emerged from the problem of dividing continuous

goods, through the seminal works of Steinhaus [Ste49], who defined proportionality, and Foley

[Fol66] and Variant [Var74], who defined envy-freeness, later generalized by Weller [Wel85].

More recently, computer scientists have considered the discrete version of the problem of sharing

indivisible goods, with relaxations of share-based guarantees such as MMS [Bud11] and envy-based

guarantees such as EF1 [Lip+04; Bud11] or EFX [Car+19]. This framework is closely related to our

setting where groups can be seen as players who benefit from bundles of jobs and have valuations
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given by the number of agents they can match. Looking closely at this reduction, the valuation of

each player (group) is a matroid rank function for which improved guarantees can be obtained

[BEF21; Ben+21; BV22; VZ23]. Notably, these recent works propose efficient algorithms that select

maximal size matchings which satisfy various fairness properties (leximin, EF1, MMS).

Our model distinguishes from these existing results as we consider a restricted continuous setting

(fractional matchings) for which strong guarantees such as proportionality and envy-freeness are

easily achievable, and for which we aim at an stronger fairness property by equalizing matching

rates. In particular, we remark that our maximal fair fractional matching easily satisfies propor-

tionality and envy-freeness.

2.2 Model

In this section we introduce the model considered in this chapter. A summary of the main notation

used in the chapter is provided in Table 2.1.

Consider a bipartite non-directed graph G = (U, V,E), with U the set of jobs, V the set of

agents, andE ⊆ U × V set of edges. We assume the graph G known.

The set of feasible matchings on the graph G = (U, V,E), denoted byM(G), is defined as the

family of all subsets ofE that do not include two edges with common extremes. As equivalently

showed by Edmonds [Edm79],M(G) corresponds to all binary matrices µ ∈ {0, 1}|U |×|V |

satisfying,

∀u ∈ U,
∑
v′∈V

µ(u, v′) ≤ 1,∀v ∈ V,
∑
u′∈U

µ(u′, v) ≤ 1, and µ(u, v) = 1 =⇒ (u, v) ∈ E.

We drop the dependence on G in any posterior definition. Notice from the matching definition

that jobs and agents may remain unmatched. Fractional matchings are obtained when relaxing

the integrality in the previous definition.

Agents are partitioned intoK groupsG1, ..., GK , whereGi ∩Gj = ∅ for i ̸= j ∈ [K], and

V =
⋃
i∈[K]Gi, with [K] := {1, 2, ...,K}. An illustration is given in Figure 2.1 with three

groups represented by the three different shapes.

We will be interested in studying the number of agents matched per group by a given matching

µ. In order to do it, we will consider the following geometric approach. LetX :M→ RK

be the mapping given by µ 7−→ X(µ) = (X1(µ), X2(µ), ..., XK(µ)), where Xi(µ) :=∑
u∈U

∑
v∈Gi

µ(u, v) denotes the number ofGi-agents matched byµ. The mappingX captures

anonymity as it does not keep track of the matched agents’ identity but only the number of

agents per group matched.
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Fig. 2.1: Example of a bipartite graph with 3 groups on the right side, represented by the different shapes.

Definition 2.1. A point x ∈ RK is realizable if there exists µ ∈M such thatX(µ) = x. We

denote the set of realizable points in RK , i.e., the image setX(M), as M1
. The mappingX

being linear in each coordinate, the convex hull of M corresponds to the image throughX of the

set of fractional matchings, i.e., co(M) is the set of fractional realizable points.

The classical maximum size matching problem focuses on matching as many agents as possible

given a graph G. Using the geometric approach, the set of maximum size matchingsP in the

graph G can be written as

P := argmax
µ∈M

{ K∑
i=1

Xi(µ)
}

= argmax
µ∈M

{
∥X(µ)∥1

}
.

The set P is always non-empty due to the finiteness of the graph G. We denote P its image

through the map X , i.e., P = X(P). We denote by MΛ the maximum number of agents of

groups Λ ⊆ [K] that can be ever matched, that is,

MΛ := max
µ∈M

∑
i∈Λ

Xi(µ), ∀Λ ⊆ [K].

In particular, the maximum number of agents we can match is equal toM[K]. Finally, we denote

ei ∈ RK the i-th canonical vector.

We will now see how we can take into account the membership of agents in the maximization

problem.

1

Remark the notation for the sets M and M. A cursive capital letter will always represent a set of matrices, while

a capital bold letter will always represent a set of points in RK
.
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2.3 Geometry of integral and fractional matchings

The maximum size matching problem can actually be expressed as a multi-objective optimization

problem (MOOP) given by the maximization of the number of agents matched for each group

Gi, which corresponds to the maximization of all entries of theK-dimension vector x ∈M:

max
{
x1 ∈ R, x2 ∈ R, ..., xK ∈ R | x = (x1, x2, ..., xK) ∈M

}
,

As we will prove later, the set of maximal matchings P will correspond to the Pareto-frontier of

the set M, which motivates its notation.

Hence, we dedicate this section to the characterization of the sets M and P and their convex hull,

respectively.

2.3.1 The discrete polymatroid M

The set M results to be a discrete polymatroid [HH02], the generalization of matroids to multisets.

Remark we are the first in the literature to study this construction for the set M. The proof is a

non-trivial extension of the fact that sets of agents who can be matched in some matching form a

(transversal) matroid.

Theorem 2.1. The set M is a discrete polymatroid, that is,

• Whenever x ∈ NK and y ∈M such that x ≤ y (coordinate wise), then x ∈M,

• Whenever x, y ∈ M and ∥x∥1 < ∥y∥1, there exists i ∈ [K] such that xi < yi and
x+ ei ∈M.

Proof. The first point is direct as unmatching agents does not affect the realizability of a matching.

To prove the second point, select two matchings µ ⊆ E and ν ⊆ E such that x = X(µ) and

y = X(ν). First, we build the symmetric difference δ = µ△ν. Observe that δ is a subgraph

where all vertices have degree at most 2 and, therefore, it corresponds to a collection of cycles and

paths.

Because ∥x∥1 < ∥y∥1, the pigeon-hole principle implies the existence of at least one path with

one endpoint G1 in V and the other in U , such that G1 is matched by ν. If G1 is in group i1,

then swapping the edges along the path shows that x + ei1 is feasible. However, notice that it

does not necessarily hold that xi1 < yi1 (see Figure 2.2 for an example).
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To obtain i such that x + ei is feasible and xi < yi, we build the “exchange graph”, with one

vertex per group i ∈ [K], plus one special vertex 0.

• For each path in δ such that both endpoints are in V , we draw an arc from i to j, where i is

the group of the endpoint matched by µ, and j is the group of the endpoint matched by ν.

• For each path in δ with exactly one endpoint in V , of group i ∈ [K] and matched by µ,

we draw an arc from i to 0.

• For each path in δ with exactly one endpoint in V , of group i ∈ [K] and matched by ν,

we draw an arc from 0 to i.

Notice that multiple edges may exist between two vertices. Starting at i0 = 0, we pick the outgoing

arc going to group i1, and we continue to build a path greedily, until to get stuck at some node iℓ

as we have exhausted all outgoing arcs. First, observe x+ eiℓ is feasible (swap all the paths in δ

corresponding to the arcs used in the exchange graph).

Second, we show that xiℓ < yiℓ . We denote by deg−(i) (resp. deg+(i)) the in-degree (resp.

out-degree) of node i ∈ {0, 1, ...,K}. By construction, we have that deg+(0) − deg−(0) =
∥y∥1 − ∥x∥1 > 0, and that deg+(i)− deg−(i) = xi − yi for each group i ∈ [K]. If we are

stuck at iℓ, it is because deg+(iℓ) < deg−(iℓ), i.e. because xiℓ < yiℓ . ■

U V

µ

ν

x = X(µ) = (2, 2, 2)

y = X(ν) = (2, 3, 2)

∥x∥1 < ∥y∥1

U-V path

V-V path

common edge

cycle

U-U path

Exchange graph

0

Fig. 2.2: Proof of Theorem 2.1. Matchings µ and ν are drawn on the left, other edges are not represented.

V -V paths create arcs between the corresponding groups in the exchange graph from 0 while

U -V paths creates arcs to 0.

Corollary 2.2. The set P of points in M with maximum ∥ · ∥1 corresponds to the Pareto frontier of
M, that is, the set of non-Pareto dominated points in M.

Proof. Direct from applying the augmentation property of Theorem 2.1. ■
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P(312)

Fig. 2.3: Sets M, Pσ,∀σ ∈ Σ([K]), and P, forK = 2 andK = 3.

2.3.2 The set of lexicographic maximum size matchings

A permutation of [K] is a bijection function σ : [K] → [K]. The set of permutations of

[K] is denoted Σ([K]). For K = 3, we write σ = (132) to denote σ(1) = 1, σ(2) = 3, and

σ(3) = 2.

Definition 2.2. Letσ ∈ Σ([K]) be fixed. We define the set of lexicographically maximum size
matching asPσ := argmax>L(σ)

{
X(µ) : µ ∈ M

}
, where>L(σ) denotes the lexicographic

order in σ. We denote Pσ = X(Pσ) to the image throughX of the setPσ .

Notice that the finiteness of G always implies the non-emptiness of Pσ , for any permutation

σ ∈ Σ([K]). Moreover, Pσ corresponds to a unique point in RK . Figure 2.3 illustrates graphs

withK = 2 andK = 3 groups, respectively. The set of realizable points M is represented by

the whole integer polytope, the points Pσ , for σ ∈ Σ([K]), by the circles, and the set P by the

squares together with the circles.

Remark 2.1. Given a permutation σ ∈ Σ([K]), computing Pσ amounts to taking x ≡ 0K ∈
RK and sequentially maximizing its entries in the order given by σ. In particular, each Pσ can

be computed in polynomial time on the size of the graph G by running K sequential flow

algorithms (such as Ford-Fulkerson [FF56]). From a geometrical point of view, finding Pσ is done

by running a serial dictatorship process (Algorithm 5) as illustrated in Figure 2.4 forK = 3 and

σ = (132).

We conclude this section with the following useful results.

Proposition 2.3. Pσ is the only point x ∈M which maximizes each of the following two (equiva-
lent) objectives:
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Algorithm 5: Serial dictatorship

Input:
Graph G and permutation σ ∈ Σ([K])
Output:
The lexicographic maximum size point Pσ

1 Initialization:

2 x← 0K ∈ RK .

3 for i ∈ [K] do
4 maximize xσ(i) such that x is feasible:

5 xσ(i) ← max{t ≥
0 |x+ t · eσ(i) ∈M}

6 end
7 Return x.

X1

X3

X2

P(321)

P(132)

P(123)

P(213)

P(231)

P(312)

M1

Fig. 2.4: Serial dictatorship,K = 3 and

σ = (132).

1.
∑
j∈[i] xσ(j), for all i ∈ [K].

2.
∑
j∈[K] λjxσ(j), for all λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0.

Proof sketch. We assume the result does not hold and use the augmentation property of the

polymatroid to show a contradiction. The full proof is provided in Section 2.9.4. ■

Corollary 2.4. For each permutation σ the point Pσ is equal to

Pσ = (Mσ([i]) −Mσ([i−1]))i∈[K],

where σ([i]) = {σ(1), . . . , σ(i)} is the set containing the first i agents of σ.

Proof. Corollary of property (1) of Proposition 2.3. ■

2.3.3 The polytope of fractional matchings

As Edmonds did for matchings [Edm79], we can characterize the convex hull of the set of realizable

points M as the intersection of finitely many hyperplanes. To do this, we show that the convex

hull of M is a polymatroid [Edm70], which generalizes the matroid polytopes to multisets.

Proposition 2.5. The convex hull of M, denoted co(M), is a polymatroid, that is,
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• Whenever x ∈ RK and y ∈ co(M) such that x ≤ y (coordinate wise), then x ∈ co(M),

• Whenever x, y ∈ co(M) and ∥x∥1 < ∥y∥1, there exists i ∈ [K] and ε > 0 such that
xi < yi and x+ εei ∈ co(M).

Proof. Using Theorem 2.1 and [HH02, Theorem 3.4]. ■

Proposition 2.6. A point x ∈ RK+ belongs to co(M), the convex hull of the set M, if and only if,

∀Λ ⊆ [K],
∑
i∈Λ

xi ≤MΛ.

Proof. Using Proposition 2.5 and [HH02, Proposition 1.2]. ■

Finally, we prove that the set of maximum size matchings corresponds to the convex combination

of the lexicographic maximum size matchings.

Proposition 2.7. The Pareto frontier co(P) has the following characterizations.

• inequalities: co(P) = co(M) ∩ {x ∈ RK+ :
∑
i∈[K] xi = M[K]}

• extreme points: co(P) = co({Pσ : σ ∈ Σ([K])})

Proof. The characterization with inequalities follows from Proposition 2.6. To prove the charac-

terization with extreme points, we use [BCT85, Theorem 2.4]. ■

As it will be shown when studying fair maximal matchings or the Price of Fairness (Section 2.6.1),

working with fractional matchings will allow us to exploit the geometric properties of the set

co(P) and to bound the Price of Fairness even for graphs where the only integral fair matching will

be the empty one. Therefore, for most of the fairness discussions, we will relax the integrality
condition and focus on the polytope of fractional matchings.

2.4 The fairest optimal matching

Once seen that all Pareto optimal matchings have the same size, we turn our attention to the

question of finding which of them is the “fairest” one. Indeed, due to the large number of options

that the set of maximal matchings represents, there is an interest for the central planner to select
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only among those ones which satisfy some additional criteria, such as fairness. Therefore, we

present two fairness notions which can always (for any graph) be guaranteed at no loss of optimality.

For the two solution concepts, we propose their definitions and discuss their relative geometric,

procedural, and axiomatic fairness.

1. Among all possible Pareto optimal matchings, one might be tempted to chose one in the middle.

For that matter, we consider the barycenter of the extreme points of co(P). The intuition behind

the fairness of this point comes from two sources: (1) it corresponds to the expected output of

the random serial dictatorship procedure which makes it algorithmically fair and (2) it guarantees

each group their Shapley value in a given cooperative game, a standard notion from game theory,

making it axiomatically fair.

2. One rule often used in social choice [Sen17] is the egalitarian rule (or Rawlsian fairness): the

selected matching needs to maximize mini∈[K] xi, i.e., the goal is to ensure that worse off groups

do as good as possible. Due to the multiplicity of solutions, a tie-break rule is to choose the one

simultaneously maximizing the second minimum. In case of having several options, the third

minimum is considered, and so on. This solution concept is known as the leximin rule, which has

also been studied in the social choice literature [dG77; DG78].

2.4.1 The Shapley fairness

Denote v(Λ) = MΛ, for any Λ ⊆ [K]. The pair ([K], v) defines a cooperative-game with a

sub-additive value function. A classical fair solution concept in cooperative game theory is the

Shapley value where players are rewarded their average marginal contribution. Formally, we define

the Shapley value φi of group i ∈ [K] as,

φi := 1
K!

∑
σ∈Σ([K])

Mσ([i]) −Mσ([i−1]).

Notice thatMσ([i])−Mσ([i−1]) = (Pσ)i corresponds to the number ofGi-agents matched after

sequentially matching the agents inGσ(1), ..., Gσ(i−1). In particular, the vector x ∈ RK given

by xi = φi, ∀i ∈ [K], corresponds to the barycenter of the extremal points
2 Pσ of the set of

maximal matchings, as illustrated in Figure 2.5.

2

It is important to remark that the point (φ1, ..., φK) ∈ RK
corresponds to the barycenter of the extreme points

of P and not the barycenter of P, as the multiplicity of these points must be considered if some of them coincide.
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Fig. 2.5: Shapley value

We call to this vector the Shapley matching. The following proposition is immediate from the

barycenter characterization.

Proposition 2.8. The vector x ∈ RK defined by xi = φi, ∀i ∈ [K], is always realizable, it has
maximum size, and it lies in the barycenter of the extreme points {Pσ, ∀σ ∈ Σ([K])}.

2.4.2 Leximin rule

Among the optimal points in P, the leximin maximum matching will find an interesting algorith-

mic interpretation and many geometrical properties. We dedicate this section to its study.

Definition 2.3. Given x ∈ RK+ and i ∈ [K], we define x(i) as the i-th smallest coordinate of

x. We define the leximin ordering >min over RK+ , comparing sorted vectors lexicographically.

Formally,

x >min y ⇐⇒ (x(1), . . . , x(K)) >L (y(1), . . . , y(K)).

Using the fact that M is convex and compact, the leximin preorder has a unique maximum

[Beh77], which belongs to the Pareto frontier P, and which we will denote Pleximin. This implies,

in particular, that the leximin has maximum size.

Remark 2.2. Computing Pleximin amounts to taking x ≡ 0K ∈ RK and continuously in-

creasing all entries at rate 1, until reaching a facet of M, i.e., until a constraint in Proposition 2.6

becomes tight. Then, freezing all entries in this tight constraint, continue increasing the others.

Repeat the procedure until reaching the Pareto frontier P. This “waterfilling” algorithm is some-

times referred to as probabilistic serial [BM01]. We state its pseudo-code in Algorithm 6. Unlike
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Algorithm 6: Probabilistic serial

Input: Graph G.

Output: The leximin maximum point Pleximin.

1 Initialization:

2 x← 0K ∈ RK .

3 S ← [K]
4 while S ̸= ∅ do
5 maximize t such that x+ t · 1S ∈ co(M),

6 x← x+ t · 1S .

7 for Λ ⊂ [K] such that

∑
i∈Λ xi = MΛ,

8 S ← S \ Λ.

9 end
10 Return x.

P

X1

X2

P(21)

P(12)

Fig. 2.6: Probabilistic serial,K = 2.

most matroid problems, our setting allows to compute the maximal t and Λ in Algorithm 6 in

polynomial time (through linear programming) as constraints come from a matching problem.

Section 2.9.3 proves it formally.

Proposition 2.9. Pleximin is the only pointx ∈M which maximizes each of the following objectives:

1.
∑
i∈[K] min(t, xi), for all t ∈ R+.

2.
∑
i∈[j] x(i), for all j ∈ [K].

3.
∑
i∈[K] λix(i), for all λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0.

Proof sketch. Properties (2) and (3) are implied by the water filling maximization (1), which itself

is a result of the augmentation property. The full proof is provided in Section 2.9.4. ■

Proposition 2.10. The point x = Pleximin is the unique point in P that minimizes each of the
following objectives:

1. ∥x∥p, for all p > 1.

2. Var(x) := 1
K

∑
i∈[K](xi − 1

K

∑
ℓ∈[K] xℓ)2

Proof sketch. Using Proposition 2.9 for Pleximin, we can deduce that it majorizes all points in P.

By applying Karamata’s inequality and the strict convexity of the norms considered, we can deduce

the first result. The second result comes from all points in P summing to the same quantity. The

full proof is provided in Section 2.9.4. ■
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By the same arguments as above, the leximin optimal point also uniquely minimizes the Gini

coefficient over P as it is strictly Schur-Convex. An analogous property has been proved in the

fair division literature [BEF21; Ben+21], who show that in the integral setting, leximin minimizes

symmetric strictly convex function (such as sum of squares) among all utilitarian optimal alloca-

tions. Here we show that this holds true when matchings are fractional, using a slightly different

proof technique.

Denote 1 ∈ RK the vector with only ones. Interestingly, we can project back and forth between

F1 := {t1 | t ≥ 0} and P depending on whether the fairest-optimal or the optimum fair point

should be selected.

Proposition 2.11. Let x = Pleximin and y = t∗1, where t∗ = max{t ≥ 0|t1 ∈ co(M)}. It
holds that x is the ∥ · ∥2 projection on P for any point in F1, and that y is the ∥ · ∥2 projection on
F1 ∩ co (M) for any point in P.

Proof sketch. The proof relies on Proposition 2.10 and the fact thatF1 and P are orthogonal. The

full proof is provided in Section 2.9.4. ■

In this work, we are interested in two (possibly competing) objectives: fairness and matching size.

So far we have characterized some of the possible fair matchings among the maximal ones. The

following section will focus on the opposite approach: fix a set of matchings which satisfy a given

fairness property first and then, choose the largest one among those.

2.5 Weighted fairness and price of fairness

A basic and straightforward fairness notion was presented in the previous section through F1 by

requiring to match all groups equally. However, this is unlikely to fit many use cases where the size

of some groups might be much smaller than others, resulting in an important loss in optimality.

We define a general class of fairness rules which are able to take into account the graph properties

and to encompass many classical rules.

2.5.1 Weighted Fairness

Definition 2.4. Letw = (wi)i∈[K] ∈ RK+ be a fixed weighted vector. We say that an element

x ∈ RK is weighted-fair, or simplyw-fair, if for any i, j ∈ [K],

xi
wi

= xj
wj
.
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The set ofw-fair points in RK is denoted Fw. Notice that weighted-fairness can be represented in

RK as the only line connecting the origin and the point (w1, w2, ..., wK), as showed in Figure 2.7

for the following three examples of weighted-fairness notions.

1. Egalitarian fairness: for any i ∈ [K],wi = 1.

2. Demographic fairness: for any i ∈ [K],wi = |Gi|.

3. Opportunity fairness: for any i ∈ [K],wi = Mi.

M2 = |A2|

M1M21

M12

P

X1

X2

P(21)

P(12)

Population

EgalitarianOpportunity

|A1|

Fig. 2.7: Fairness notions

Relationship with fairness concepts of Section 2.4: Weighted-fairness is intricately linked

to the Shapley fairness and leximin rule previously presented. Shapley fairness corresponds to

considering weightswi = φi for any i ∈ [K]. Regarding the leximin rule, there are two possible

interpretations. Firstly, extending the leximin notion to its weighted version where the objective is

to sequentially maximize the entries of the vector xw := (xi/wi)i∈[K] (the previous definition is

recovered for egalitarian weightswi = 1), it is clear that the optimum among allw-fair matchings

corresponds to the one where all entries are equal to the minimum of the weighted leximin. Indeed,

when running the water-filling process, instead of continuing to optimize other entries, the optimal

w-fair matching stops at the first constraint saturation. Weighted fairness is, somehow, a strong
fairness notion as no group envies the others’ allocation based on their respective entitlements

while the weighted leximin rule is a weak fairness notion that allows for some groups to be better

off.

Remarkably, the set of fair matchings and the (sub)-set of optimal matchings are also linked

geometrically through the leximin and the optimum amongw-fair matchings: as can be seen in

Proposition 2.11 for the egalitarian fairness, the projection of F1 over the set of maximal match-

ings corresponds to the leximin point, while the projection of the maximal matchings over F1

corresponds to the fair optimum. Thus, it is possible to project back and forth between the two
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notions. This is shown more generally for anyw > 0 in Section 2.9.2, where instead of maximal

matchings, we work with the set of w-weighted maximal matchings.

Weighted-fairness relates to group-fairness in Machine Learning when looking at predictions as

selected matchings (Ŷ = 1 if the agent is matched) and true labels as entitlement (e.g., Y = 1 if

the agent would be matched if only her group was present). For a group containingNi agents,

Mi of which could possibly be matched ignoring other groups, and xi of them being currently

matched, then demographic parity corresponds to equalizing xi/Ni (demographic fairness), and

equal opportunity corresponds to equalizing xi/Mi (opportunity fairness). This justifies the

names selection for the corresponding weighted fairness notions.

2.5.2 Price of Fairness

The following measure is at the heart of our analysis and measures the loss on optimality suffered

when weighted fairness constraints are imposed.

Definition 2.5. Givenw ∈ RK+ fixed, we define thew-Price of Fairness (PoFw) as,

PoFw = maxx∈M ∥x∥1
maxx∈Fw∩co(M) ∥x∥1

.

The set Fw ∩ co(M) is always non-empty as the empty matching is always w-fair. Whenever

Fw ∩ co(M) = {0RK}we say that PoFw =∞. The weighted PoF, and more generally the PoF

for any fairness notion defining a set Fw ∩ co(M) that is closed and not reduced to a singleton, is

bounded for fractional matchings. This is not always the case for integer matchings. We prove all

this in Section 2.6.1.

We can also be interested in an additive difference between the optimum and fair optimum.

Interestingly, for most fairness notions (even beyond weighted fairness), using the structure of the

maximum matchings being exactly the Pareto optimal matchings, we can obtain a characterization

of this additive gap in terms ofL1 distance between P and F ∩ co(M).

Proposition 2.12. Let F be a set of fair points that is closed and non-empty. Denote H := F ∩
co(M) and d1(co(P),H) := inf(x,y)∈co(P)×H∥x− y∥1. It holds,

d1(co(P),H) = max
x∈co(M)

∥x∥1 −max
y∈H
∥y∥1,

In addition, the infimum in d1(co(P),H) is always attained.

Proof sketch. The proof is provided in Section 2.9.4. ■
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Nevertheless, one might be interested in exactly computing this additive gap or the PoFw. The

following section discusses how to efficiently (on the the graph size) do it.

2.5.3 Maximum size fair matching: A linear programming
approach

The exact computation of the PoFw for a given graph G and vector w is a polynomial prob-

lem on the size of G and on K . The computation of maxx∈M ∥x∥1 can be done through

any maximum matching procedure, such as the Hungarian method [Kuh55]. To compute

maxx∈Fw∩co(M) ∥x∥1, we present a linear programming formulation.

Letw ∈ RK+ be a vector of weights. w-Fairness imposes that ∀i, j ∈ [K], xi/wi = xj/wj = c,

for c some constant. Having this in mind, anyw-fair vectorx ∈ RK satisfiesx =
(
cw1, cw2, ..., cwK

)
.

In order to find a maximum sizew-fair matching therefore, it is enough with solving the following

linear program (LP),

max
{
c> 0

∣∣ c∑
i∈Λ

wi ≤MΛ,∀Λ ⊆ [K]
}
. (2.1)

The optimal value of the previous LP corresponds to,

c∗ := min
Λ⊆[K]

MΛ∑
i∈Λwi

and then,

max
x∈Fw∩co(M)

∥x∥1 = c∗ ∑
i∈[K]

wi.

Remark 2.3. Notice that under this formulation, computing c∗
is exponential on the number of

groups. However, our constraints come from an underlying matching problem and thus, it can

be computed in polynomial time through a linear program having only a polynomial number of

constraints, as demonstrated in Section 2.9.3.

From an algorithmic point of view, Equation (2.1) can be interpreted as running Algorithm 6

with rates (wi)i∈[K] and stopping at the first saturation of the constraints. Alternatively, by being

able to compute allMΛ efficiently, we can give an efficient oracle to the membership of x ∈M in

timeO(2K) using the characterization of M given in Proposition 2.6.

This result can also be compared to the one in [Chi+19; Ban+23] who consider computationally

harder problems with integral matching, and can provide approximations of maxx∈Fw∩M ∥x∥1
with an exponential dependency inK .
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Once showed how to efficiently compute the PoFw it remains the question of how large it can be.

One major downside of Egalitarian and Demographic Fairness is the fact that they suffer by the

disparity in the size of groups or the addition of isolated vertex to the graph. This is not an issue

for the opportunity fairness notion which takes into account the whole graph structure. Because

of this, we choose to extend the study of the opportunity PoF in the following section in its worst

case setting and beyond.

2.6 Opportunity price of fairness

Recall a point x ∈ RK+ is opportunity fair if it verifies

xi
Mi

= xj
Mj

, ∀i, j ∈ [K], (2.2)

whereMi is the maximum number ofGi agents that can be ever matched. We denote FO the

set of opportunity fair points. We dedicate this section to study the Opportunity PoF in three

settings: worst case, beyond the worst case, and random graphs.

2.6.1 Worst-case analysis

Opportunity fairness will achieve different results depending on the dimension of the problem, i.e.,

the number of groupsK . Moreover, we start by showing that considering fractional matchings

is crucial for the worst case analysis as the Opportunity-PoF (PoFO) is known to remain always

bounded (Proposition 2.12) while for integer matchings we can construct graphs where the only

fair matching is the empty one, yielding an unbounded PoFO.

Proposition 2.13. For any constant M > 0, there exists a graph G such that the only element in
FO ∩M(G) is the null vector 0K , while there exist matchings µ ∈M(G) withX(µ) ≥M .

Proof. TakeK = 2 and letM1 andM2 be two different prime numbers such thatM1+M2−1 ≥
M . Consider a graph G with M1 − 1 jobs connected to all agents in G1 but no agent in G2,

M2 − 1 jobs connected to all agents inG2 but no agent inG1, and one additional job connected

with everybody, as in Figure 2.8 left. The maximum size matching has size M1 + M2 − 1. A

point x ∈ M has both x1 and x2 in N yet, as M1 and M2 are primes and different, for both

coordinates to be integer and satisfy opportunity fairness, either x = (0, 0) or x = (M1,M2).

Since (M1,M2) /∈M, it holds FO ∩M = (0, 0). Figure 2.8 right illustrates these points. ■
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Fig. 2.8: Integral PoFO

Proposition 2.13 implies the following result.

Corollary 2.14. For integer matchings it holds supG graph PoFO(G) =∞.

The issue exposed in Corollary 2.14 is solved when working with fractional matchings.

Theorem 2.15. For fractional matchings, it holds that supG graph PoFO(G) = K − 1.

Proof. First let us show the upper bound. Suppose FO ∩ co(P) = ∅, otherwise PoFO = 1 ≤
K − 1. The PoFO is given by,

PoFO =
M[K]
MΛ∗

·
∑
i∈Λ∗ Mi∑
i∈[K]Mi

,

where Λ∗
achieves the solution of Equation (2.1). Since FO ∩ co(P) = ∅, Λ∗ ̸= [K]. Setting

λ := argmax(Mi : i ∈ Λ∗), notice thatMΛ∗ ≥Mλ ≥ 1
|Λ∗|

∑
i∈Λ∗

Mi. Plugging this bound in

the PoFO definition, it follows,

PoFO ≤ |Λ∗| ·
M[K]∑
i∈Λ∗ Mi

·
∑
i∈Λ∗ Mi∑
i∈[K]Mi

≤ |Λ∗| ≤ K − 1,

where we have used that M[K] ≤
∑
i∈[K]Mi and |Λ∗| ≤ K − 1 as Λ∗ ̸= [K]. To show the

tightness of the bound, let M and N be two values. Consider next a graph where a group is

independently connected toM jobs andK − 1 groups connected toN jobs at the detriment of

the other groups (see Figure 2.9 for an example whenK = 3). It holds,

PoFO = M +N
M
K−1 +N

M→∞−−−−→ K − 1.
■

Theorem 2.15 implies the following remarkable result.
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Corollary 2.16. For any graph G withK = 2, PoFO(G) = 1.

This can also be derived from a simple geometrical argument as it can be proved that the Pareto

frontier and the line [(0, 0), (M1,M2)] always intersect. Unfortunately, as shown in Theorem 2.15

and illustrated by Figure 2.9 (µ∗
O denotes an opportunity fair maximum size matching), the

property does not necessarily hold for larger values ofK . Remark, however, that the worst case

example relies on disparate maximum number of matchable agents among different groups. It

seems intuitive that whenever the values (Mi)i∈[K] are restricted to be equal, we should rule out

such a worst case example. This motivates a beyond worst case study for PoFO under additional

structure either on the parameters or on the geometry.

X1

X2

X3

P

M2

M1

P123

P213

P132

P231

M3

X(µ∗
O)

(M1,M2,M3)
P321

P312

V3

V1

V2

Fig. 2.9: Toblerone graph

2.6.2 Beyond the worst case analysis

We start the analysis by considering upper bounds which depend on the relative opportunity

levels of the groups (Mi)i∈[K].

Proposition 2.17. The PoFO is never greater than

maxi∈[K]Mi

2 mini∈[K]Mi
+ K

4

(maxi∈[K]Mi

mini∈[K]Mi

)2
+ 1

4K 1Kodd. (2.3)

Moreover, wheneverMi = Mj for all i, j ∈ [K], the bound is tight
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Fig. 2.10: Set co(M) shape. Left pyramid ρ = 1/K , right hyper-rectangle ρ = 1.

Proof sketch. Consider the maximal opportunity-fair matching, the facet of co(M) where it lies,

and the set of indices corresponding to the facet. We express the PoFO as a function of the cardinal

of this subset and differentiate the obtained expression to find its maximum. The maximum being

reached when the subset contains half of the groups, the upper bound is derived. The full proof is

provided in Section 2.9.4. ■

The previous bound concerns the size of the polytope M. Alternatively, we study an upper-bound

related to the geometry of M captured by the parameter ρ := M[K]/
∑
i∈[K]Mi, that is, the ratio

between the size of a maximum size matching and the ideal optimum, the Utopian matching where

each group gets as many matched agents as if they were the only group on the graph. It is direct

that ρ ∈ [1/K, 1] and that the extreme cases correspond to M be shaped as an inverted pyramid

(ρ = 1/K , Figure 2.10 left) with the origin as the top of the pyramid and P as the pyramid basis,

and as a hyper-rectangle (ρ = 1, Figure 2.10 right). In both cases, FO intersects P independent

on the value of K , yielding PoFO = 1. The following proposition gives a quantitative result

for intermediary cases where the geometry of M differs from a perfect inverted pyramid or a

hyper-rectangle.

Proposition 2.18. Suppose that for all i ∈ [K],Mi = M > 0, and let ρ = M[K]∑
i∈[K] Mi

= M[K]
KM

be the rate between the size of a maximum size of matching and the size of the Utopian matching. If
ρ ∈ [ 1

K ,
1

K−1 ], then PoFO = 1. Otherwise, for ρ ∈ [ 1
K−1 , 1], we have that

sup PoFO(G)
G s.t. Mi = M,ρ is fixed

= ρmax
(
K − ⌊Kρ⌋+ 1
Kρ− ⌊Kρ⌋+ 1 ,K − ⌊Kρ⌋

)
≤ ρ((1− ρ)K + 1)

Proof sketch. The bound is showed by determining a lower bound on the quantity c∗
as a function

of ρ. The tight example is constructed from a continuous parametrization in terms of competition

between groups from Figure 2.9. The proof is provided in Section 2.9.4. ■
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Fig. 2.11: Plot of maximum PoFO and relaxed bound as a function of ρ forK = 10 andMi = M

This tight bound is surprisingly multimodal as it can be seen in Figure 2.11. The tight bound is

recovered when all valuesMi are equal (Proposition 2.17) by simply maximizing the above bound

over ρ. Notice that a slight modification of the proof generalizes the bound by taking into account

the quantity maxMi/minMi. However, the range for which the bound remains valid is smaller

in maxMi/minMi than for Proposition 2.17.

Rather than deriving refined inequalities we prefer to find sufficient conditions to identify graphs

with a PoFO equal to 1. To do this, givenσ ∈ Σ([K]), we denoteMσ :=
(Mσ([ℓ])−Mσ([ℓ−1])

Mσ(ℓ)

)
ℓ∈[K]

(recallMσ([ℓ]) corresponds to the size of a maximum size matching when only considering the

first ℓ groups on σ([K])).

Proposition 2.19. Whenever all sequences {Mσ, σ ∈ Σ([K])} are non-increasing, it holds
PoFO = 1.

Proof sketch. From the sequenceMσ
being non-increasing, we can show that the function Λ ⊂

[K] 7→ MΛ/
∑
i∈ΛMi is non-increasing in Λ. This implies that the set which solves Equa-

tion (2.1) is [K], obtaining a PoFO of 1. The proof is provided in Section 2.9.4. ■

Proposition 2.19 gives a sufficient condition for a graph to have a PoFO equal to 1. Notice that

forK = 2, the sequencesMσ
are always non-increasing, recovering Corollary 2.16. Remark as

well that, although sufficient, the condition is not necessary to obtain an opportunity PoF equal

to 1. Indeed, consider a graph G with four groups, one agent per group, two jobs, such thatG1

andG2 are connected to one of them, andG3 andG4 are connected to the other one. It holds

PoFO(G) = 1 and yet G has increasing sequences. Nonetheless, the monotonicity condition is

useful to study, for instance, complete graphs.

Proposition 2.20. Let G be a complete graph. Then, PoFO(G) = 1.
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Proof sketch. To obtain this result, we show that Mσ
is non-increasing and apply the previous

proposition. The proof is provided in Section 2.9.4. ■

Real-life applications can rarely be modeled by worst case settings, even under extra structure

as studied in this section. This motivates us to go beyond these approaches and to consider a

stochastic setting with random graphs, as presented in the following section.

2.6.3 Stochastic model

We dedicate this sub-section to study the Opportunity Price of Fairness for Erdös-Rényi bipartite

graphs and to determine regimes where a PoFO equal to 1 is asymptotically
3

achievable. We define

a bipartite Erdös-Rényi graph with one side V of size n and another side U of size ⌊βn⌋, for

β ∈ (0, 1) fixed and known, such that,

• for any v ∈ V , v belongs to the group Gi, for i ∈ [K], with probability αi ≥ 0, such that∑
i∈[K] αi = 1. Each node in V is assigned to one and only one group,

• each node v ∈ Gi has probability pi ∈ (0, 1), known and fixed, to be connected to each node

inU , independently.

We denote Gn,β,α⃗,p⃗ = (U, (Gi)i∈[K], E) the random bipartite graph just described, where

α⃗ := (αi)i∈[K] and p⃗ := (pi)i∈[K]. For simplicity, we drop the indices and just denote G to the

Erdös-Rényi bipartite graph. We aim at characterizing the regimes for which PoFO(G) = 1. In

order to do it, we recall in Section 2.9.4 two results from the literature of random graphs [FK16]

which characterize, respectively, the edge probability for which random graphs become sparse,

and for which random graphs become dense enough to ensure the existence of perfect matchings.

We show that in both cases, with high probability, PoFO(G) is equal to 1.

Proposition 2.21. Consider an Erdös-Rényi bipartite graph G such that maxi∈[K] pi ≤ 1
ωn3/2

for ω = ω(n)→∞ arbitrarily slow as n→∞. Then, with high probability, PoFO(G) = 1.

Proof sketch. The bipartite graph generated by maxi∈[K] pi can be shown to be sparse using

properties from random graphs. This implies that with high probability no two agents have the

possibility of being matched to the same jobs. The proposition with respect to different pi is

implied by stochastic domination of the random graph with maxi∈[K] pi. The proof is provided

in Section 2.9.4. ■

3

Recall that classical results in random graphs are stated as the number of vertices grows to +∞.
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Proposition 2.22. Consider an Erdös-Rényi bipartite graph G such that pi ≥ log2(n)/n for any
i ∈ [K]. Then limn→∞ P(PoFO(G) = 1) = 1.

Proof sketch. The proof goes as follows: First, we show |Gi| concentrates around αin. Second,

we show thatMi = min(αin, n). Third, we prove that for any σ ∈ Σ([K]), the sequenceMσ

is non-increasing by running Algorithm 5. We can then apply Proposition 2.19. See Section 2.9.4

for the full proof. ■

2.7 Extension to general matroids

In Section 2.3.1 we used the fact that the set M defines a polymatroid, and used polymatroid

properties to prove Theorem 2.1. In fact, many of our results come from the very particular

shape of M, and this shape is not specific to bipartite matching problems but to a broad class

of polymatroids. In this section, we define matroids, polymatroids and we explain how we can

extend our fairness analysis to a broad class a combinatorial problems beyond matching.

2.7.1 Matroids and polymatroids

We start by giving the definition of a matroid.

Definition 2.6. A pair (E,M), withE a finite set andM⊆ 2E a family of subsets ofE that

contains the empty set ∅, is called a matroid if the following properties hold,

1. ∀A ∈M andA′ ⊆ A,A′ ∈M,

2. ∀A,B ∈M such that |A|< |B|, ∃e ∈ B \A such thatA ∪ {e} ∈ M.

E is called the ground set andM the family of independent sets.

Some classes of matroids are defined by properties that give them specific structures, here we

provide some examples.

• Transversal matroid. LetG = (U, V,E) be a bipartite graph. For a matching µ ⊆ E we

denote µ(E) := {v ∈ V | ∃u ∈ U, (u, v) ∈ µ}. IfM := {µ(E),∀µ ⊆ E matching},
then the pair (U,M) is a transversal matroid.

• Graphic matroid. Given G = (V,E) a graph, the graphic matroid is the pair (E,M)
such thatM := {A ⊆ E | A is acyclic}.
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• Uniform matroid. Given E a finite set and r ∈ N, the r-uniform matroid is the pair

(E,M) such thatM := {A ⊆ E | |A| ≤ r}.

The bipartite matching problem can therefore be modeled by a transversal matroid (notice that

the notation we introduced here are consistent with those used in the rest of the chapter). The

communication network problem, the goal of which is to maintain a communication network

between different locations in a city, can be modeled as a graphic matroid. The state can request

bids from various types of companies (public and private, for example) to externalize the task. If

V corresponds to the city locations andE to the possible communication connections between

them, finding an acyclic subset of edges ensures to minimize the material costs.

Definition 2.7. Given a matroid (E,M), a basis is a maximal independent set, i.e., anyA ∈M
such that, for any e ∈ E \A,A ∪ {e} /∈M.

By the augmentation property, all bases of (E,M) have the same size and are therefore maximum.

This number is called the rank of the matroid and it is denoted rank(M). For a fixed subset

of A ⊆ E, we can define the sub-matroid (A,MA) byMA := {A′ ⊆ A | A′ ∈ M}. In

particular, this allows to extend rank(·) to all sets of 2E .

Definition 2.8. Given f : 2E → R+ a submodular function (i.e.,∀A,B ∈ E, f(A)+f(B) ≥
f(A ∪B) + f(A ∩B)), the polymatroid associated to f is the polytope defined as,

Qf :=
{
x ∈ RE+ |

∑
e∈E′

xe ≤ f(E′), ∀E′ ⊆ E
}
.

The integer polytope Qf ∩ NE is called a discrete polymatroid. Equivalently, a polytope

Q ⊆ RE+ is a polymatroid if it verifies the following properties,

1. For any x ∈ RE+ and y ∈ Q such that x ≤ y (component wise), x ∈ Q,

2. If x, y ∈ Q with ∥x∥1< ∥y∥1, there exists z ∈ Q such that ∀e ∈ E, xe ≤ ze ≤
max{xe, ye}with at least one strict equality between x and z.

We will show that when the ground setE of a matroid is divided into groups, and we project it on

RK with the mappingX as we did before, we obtain a polymatroid.

2.7.2 Colored matroids

We now introduce colored matroids [Chi+19].
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Definition 2.9. Let (E,M) be a matroid,K ∈ N be a fixed integer, and (Ei, i ∈ [K]) (called

groups or colors) be a partition ofE. We call ((Ei)i∈[K],M) a colored matroid (with K colors).

Given a colored matroid, we define the mapping

X : M−→ RK+
A −→ (X1(A), X2(A), ..., XK(A)) := (|A ∩ E1|, |A ∩ E2|, ..., |A ∩ EK |),

that is,X maps independent sets into vectors of dimensionK counting the number of elements

of each color.

Theorem 2.23. Let ((Ei)i∈[K],M) be a colored matroid. The set of allocationsX(M) verifies,

1. For any x ∈ RK+ and y ∈ X(M) such that x ≤ y (component wise), x ∈ X(M).

2. For any x, y ∈ X(M), with ∥x∥1< ∥y∥1, there exists i ∈ [K] such that xi<yi and
x+ e⃗i ∈ X(M).

This theorem is the generalization of Theorem 2.5 to general matroids. The proof is analogous to

the proof of Theorem 2.5 and is therefore omitted. Theorem 2.23 implies two facts: (i)X(M) is

a discrete polymatroid and (ii) for any two x, y ∈Mwith |x| > |y|, there always exists an agent

from a less represented group in x that can be added to y.

From Section 2.3.1 we immediately obtain the following result:

Corollary 2.24. Let ((Ei)i∈[K],M) be a colored matroid. It follows, that co(X(M)) is a poly-
matroid which can be represented as

co(X(M)) :=
{
x ∈ RK+ | ∀Λ ⊆ [K],

∑
i∈Λ

xi ≤ rank(Λ)
}
,

where rank(Λ) := rank(∪i∈ΛEi) is the size of a basis on the sub-matroid generated by the elements
with labels in Λ.

2.7.3 Extension of our results

We will not state and prove again all the results from this chapter that extend to colored matroids,

but only go over which results extend and for which classes of matroids. The results that are

extensions of numbered statements are given with the reference of the original statement.
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True for: Statement: Extends:

Any

(colored)

matroid

The Pareto front of co(X(M)) is equal to the set

Corollary 2.2

{x ∈ X(M))|∥x∥1 = rank(M}

The Shapley allocation exists, is on the Pareto front,

Prop. 2.8

and is the barycenter of the Pσ , σ ∈ Σ([K])

PoFO ≤ K − 1, and ifK = 2 then PoFO = 1 Theorem 2.15

PoFO ≤ 1
2 ·

maxi∈[K] rank(i)
mini∈[K] rank(i) + K

4 ·
(

maxi∈[K] rank(i)
mini∈[K] rank(i)

)2

Prop. 2.17

+
1

4K · 1Kodd

PoFO ≤ ρmax
(
K−⌊kρ⌋+1
Kρ−⌊Kρ⌋+1 ,K − ⌊Kρ⌋

)
Prop. 2.18

≤ ρ((1− ρ)K + 1)

Uniform,

transversal &

graphic

matroids

Algorithm 5 is polynomial in |E| Remark 2.1

For any weight vectorw, aw-fair allocation can be

Remark 2.3

found in polynomial time w.r.t. |E| andK

Transversal

& graphic

All the bounds on PoFO given above are tight

Uniform PoFO = 1 for anyK

2.8 Discussion

While we have focused on maximizing the cardinality of a bipartite matching with fairness con-

straints on the agents side, it is natural to consider various generalizations of this problem. In

terms of utility objectives, it could be reasonable to consider weighted matching. If the edges

weights are based on agents groups, this simply leads to a skewed polytope, and some results can

be obtained (see Section 2.9.2). However, whenever the weights depend on the agents or on the

edges, it is not clear whether similar general results can be obtained, as anonymity between agents

and the augmentation property, which is crucial to the polymatroid structure, are both lost.

Fairness requirements can also be modified to consider possible discrimination on both sides of

the bipartite matching by assigning types to jobs, and seeking matchings such that the number of

matched pairs between groups and types are equal for all possible pairs. This two-sided fairness

unfortunately cannot be directly encoded into a larger bipartite graph, as it requires to take into

account that jobs can only be matched once.
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Finally, a third possible generalization is on the structure of the problem, where general graphs are

considered instead of bipartite graphs. Clearly, it also cannot be encoded into the setting studied

in this chapter for the same previously mentioned reasons.

2.9 Appendices

2.9.1 Notation

Table 2.1 provides a summary of the notation used throughout the chapter.

Tab. 2.1: Notation for Chapter 2

Graph and groups:

G Graph

U Jobs

V Agents

E Edges

Gi Group i
K Number of groups

[K] List of all groups (= {0, . . . ,K})

Λ Subset of groups (⊆ [K])

Matchings:

µ Matching

M Feasible matchings

P Maximum matchings

X Mapping fromM to RK
M Realizable points (= X(M))

P Maximum points and Pareto front (= X(P))

co(M), co(P) Convex hulls of M, P
>L(σ) Lexicographic order along permutation σ

Permutations and extremal points:

σ Permutation of [K]
Σ([K]) Set of all permutations

Pσ Lexicographic maximum matching for permutation σ
Pσ Extremal point of P corresponding to σ (= X(Pσ))

MΛ Size of a maximum matching when restricting V to

⋃
i∈Λ

Gi

Fairness:

w-fair Fair w.r.t. Definition 2.4 with vectorw ∈ RK+
Fw Set ofw-fair matchings

PoFw Price of fairness, for thew-fairness rule
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2.9.2 Generalization of projection properties for weighted
fairness and weighted leximin

Let us start this section by discussing a third possibility to define a ‘fairest’ optimal matching. Let

w = (w1, . . . , wK), withwi > 0,∀i ∈ [K], be a vector of positive weights, corresponding to

the entitlement of each group. Denote by
1
w = ( 1

wi
)i∈[K].

Definition 2.10. We define Pw
as the set of weighted maximal matchings, that is,

Pw := argmax
x∈M

( 1
w

)⊤
x. (2.4)

Remark the set of maximal matchings corresponds to P = P1
.

We denote by Σw([K]) ⊆ Σ([K]) the set of permutations which are consistent withw, namely

for any σ ∈ Σw([K]) and for any (i, j) ∈ [K]2 , σ−1(i) < σ−1(j) if and only if 1/wi ≥ 1/wj
. This ensures that whenever i appears before than j in σ, the weight associated to i is at least as

high as the one of j. The number of permutations which are consistent withw depends on the

number of unique weights values, and the number of groups which have this same unique value.

More specifically,

|Σw([K])| =
∏

u∈{wi|i∈[K]}
|{i | wi = u}|.

In particular, if all wi are distinct, Σw([K]) is reduced to a singleton, while for equal weights

Σw([K]) = Σ([K]).

We have the following property:

Proposition 2.25. The set of weighted maximal matchings is equal to the convex hull of the lexico-
graphic maximal matchings for allw-consistent permutations. More precisely:

Pw = co({Pσ | σ ∈ Σw([K])}). (2.5)

Proof. First, by Proposition 2.3 taking λi = 1/wi, it is immediate that all points Pσ which are

optimal for the weighted objective are exactly those with σ ∈ Σw([K]). Thus, the linearity of the

mappingX implies that co({Pσ | σ ∈ Σw([K])}) ⊂ Pw
.

Conversely, as weights are positive, Pw ⊆ P. Since P corresponds to the convex hull of all

lexicographic maximum size points Pσ , but those Pσ with σ ̸∈ Σw([K]) are sub-optimal, their

coefficient on the convex combination must be necessarily zero, implying that P = co({Pσ |
σ ∈ Σw([K])}). ■
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As points in Pw
are also maximal in the sense of cardinality, this provides another possible notion

of fairness which induces no optimality loss. The less unique values ofw, the smaller the dimension

of Pw
is. Let us see how some of our results translate to these new weighted optimal maximizers.

We denote by xw the re-scaled point (x1/w1, . . . , xK/wK), and for the definite positive matrix

Dw = Diag(1/w), the associated norm ∥x∥w = x⊤D⊤
wDwx. Let Pw

leximin be thew-weighted

leximin maximum point. By considering the scaled fractional polytope Mw := {xw | x ∈M},

it is clear that the augmentation property of Proposition 2.5 still applies, hence the set of maximal

points Pw
is exactly the Pareto frontier in Mw

. Because the weighted leximin optimal matching

belongs to the Pareto frontier of Mw
, by definition, it is also maximal and therefore, it belongs to

Pw
. We are ready to state the generalization of Proposition 2.10.

Proposition 2.26. The point x = Pw
leximin ∈ Pw is the unique point that minimizes each of the

following objectives among all points in Pw :

1. ∥x∥w = x⊤D⊤
wDwx.

2. Var(x) := 1
K

∑
i∈[K]( xi

wi
− 1

K

∑
ℓ∈[K]

xℓ
wℓ

)2

Proof. The proof is identical as in the main body: (1) It can be shown that for any point z ∈
Pw

it holds ∥z∥w ≥ ∥x∥w, (2) all points in Pw
sum up the same as xw, and (3) ∥x∥2w =∑

i∈K(xi/wi)2
. The second point follows similarly. ■

The projection property can also be extended, with the correspondent proof by scaling the vectors

byw.

Proposition 2.27. The ∥ · ∥w-projection of Pw onto Fw is the fair optimum y = t∗w where
t∗ = max{t ≥ 0 | tw ∈ co(M)}, and the ∥ · ∥w-projection of Fw onto Pw is Pw

leximin.

We observe that Pw
and Fw, when projected one on another with ∥ · ∥w, it reduces to either the

fair optimum or the optimum fair. The main difference compared tow = 1, is that a different

distance is used as we scale the polytope byw.

2.9.3 Computational remarks

In this section, we show that several computational tasks involving fractional matching can be

performed in polynomial time, using a linear programming approach. First, recall that X is

a linear mapping that maps fractional matchings µ ∈ co(M) to the corresponding points

X(µ) ∈ co(M). A natural question is: given x ∈ RK+ , can we decide in polynomial time if

x ∈ co(M), and if so can we build a fractional matching µ such thatX(µ) = x?
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Proposition 2.28. Given x ∈ RK+ , there exists a fractional matching µ ∈ co(M) such that
X(µ) = x if and only if the following linear program has a feasible solution with value ∥x∥1,

maximize
∑
u∈U

∑
v∈V

µu,v

such that 0 ≤ µu,v ≤ 1{(u,v)∈E} (∀u ∈ U, v ∈ V )∑
u∈U

µu,v ≤ 1 (∀v ∈ V )

∑
v∈V

µu,v ≤ 1 (∀u ∈ U)

∑
v∈Gi

∑
u∈U

µu,v = xi (∀i ∈ [K])

Proof. The proof follows from the definition ofX . ■

Next, in various settings (to compute the leximin optimal, or a maximal fair matching), we want

to start from a point x ∈ co(M), and increase continuously each xi at a rate ofwi, until some

constraint

∑
i∈Λ xi ≤MΛ is saturated.

Proposition 2.29. Given x ∈ co(M) and a vector of weightsw ∈ Rk+, we define

c∗ = max{c ≥ 0 |x+c·w ∈ co(M}) = max

c ≥ 0 | ∀Λ ⊂ [K],
∑
i∈Λ

(xi + c · wi) ≤MΛ

 .
Then, c∗ is equal to the optimal solution of the following linear program.

maximize c

such that c ≥ 0

0 ≤ µu,v ≤ 1{(u,v)∈E} (∀u ∈ U, v ∈ V )∑
u∈U

µu,v ≤ 1 (∀v ∈ V )

∑
v∈V

µu,v ≤ 1 (∀u ∈ U)

xi + c · wi =
∑
v∈Gi

∑
u∈U

µu,v (∀i ∈ [K])

Proof. Given a feasible solution c to the linear program, the variables µu,v provide a fractional

matching proving that x + c · w ∈ co(M). Conversely, the optimal c∗
has a corresponding

fractional matching, which yields a feasible solution to the linear program. ■

Finally, when increasing each coordinate xi at a rate ofwi, we sometimes need to compute the sets

Λ ⊆ [K] for which the constraint

∑
i∈Λ(xi + c · wi) ≤MΛ is saturated (holds with equality).
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Importantly, using [BCT85, Lemma 2.2] the set of Λ’s for which the constraint is tight is closed

under union and intersection. That implies that there exists a maximal (inclusion-wise) set Λ∗

which saturates the constraint.

To compute Λ∗
, we start by computing the optimal solution to the dual linear of Proposition 2.29.

Each constraint xi + c · wi ≤
∑
v∈Gi

∑
u∈U µu,v has a dual variable which, by complementary

slackness, will be positive only if the constraint is tight. Finally, we define Λ∗
as the set of groups

for which the dual variable is positive. By construction, we have that

∑
i∈Λ∗ xi = MΛ∗ .

2.9.4 Omitted proofs

In this section, we present the omitted proofs of the chapter.

Proof of Proposition 2.3

Without loss of generality take σ = IK the identity permutation and x = Pσ . To prove property

(1) it is enough to show that for any i ∈ [K], x1 + x2 + · · ·+ xi = M[i]. Take i ∈ [K], define

y = (x1, x2, . . . , xi, 0, . . . , 0), and z = (z1, . . . , zi, 0, . . . , 0) such that ∥z∥1 = M[i]. By

definition ofM[i], it holds ∥y∥1 ≤ ∥z∥1. If the inequality is strict, the augmentation property of

Theorem 2.1 contradicts the lexicographic optimality of x, hence proves point (1). To prove (2),

take y ∈M, λ1 ≥ λ2 ≥ · · · ≥ λK ≥ λK+1 = 0, and write

λ1x1 + · · ·+ λixK = (λ1 − λ2)x1 + · · ·+ (λK − λK+1)(x1 + · · ·+ xK)

≥ (λ1 − λ2)y1 + · · ·+ (λK − λK+1)(y1 + · · ·+ yK)

= λ1y1 + · · ·+ λKyK ,

where the inequality is a (positive) linear combination of inequalities from property (1).

Proof of Proposition 2.9

For convenience, define x = Pleximin. To prove (1), assume for the sake of contradiction that

there exists t ≥ 0 and y ∈ M such that

∑
i∈[K] min(t, xi) <

∑
i∈[K] min(t, yi). We define

two points x̃, ỹ ∈M, where x̃i = min(t, xi) and ỹi = min(t, yi), and we get ∥x̃∥1 < ∥ỹ∥1.

Using the augmentation property of Proposition 2.5, there exists i ∈ [K] such that x̃i < ỹi and

x̃+ εei ∈M. Finally, observe that x <min x̃+ εei which contradicts the leximin optimality of

x.
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To prove (2), we proceed by induction. The property holds at j = 1 by definition of Pleximin.

Assume the property holds at j−1. For the sake of contradiction, assume that there exists y ∈M
such that

∑
i∈[j] x(i) <

∑
i∈[j] y(i). Then, we have x(i) < y(i). Setting t = y(i), observe that

K∑
j=1

min(t, xj) ≤
i∑

j=1
x(i) + (K − i+ 1) · t <

i∑
j=1

y(i) + (K − i+ 1) · t =
K∑
j=1

min(t, yj).

This contradicts (1), which concludes the induction proof of (2). To prove (3), take y ∈ M,

λ1 ≥ λ2 ≥ . . . λK ≥ λK+1 = 0, and write

λ1x(1) + · · ·+ λKx(K) = (λ1 − λ2)x(1) + (λ2 − λ3)(x(1) + x(2)) + . . .

+(λK − λK+1)(x(1) + · · ·+ x(K))

≥ (λ1 − λ2)y(1) + (λ2 − λ3)(y(1) + y(2)) + . . .

+(λK − λK+1)(y(1) + · · ·+ y(K))

= λ1y(1) + · · ·+ λKy(K),

where the inequality is a (positive) linear combination of inequalities from property (2).

Proof of Proposition 2.10

Let z ∈ P . Because P corresponds also to the set of maximum matchings, we have that ∥z∥1 is

equal for all points in P , in particular ∥x∥1 = ∥z∥1. Using Proposition 2.9, we know that for all

j ∈ [K],
∑
i∈[j],

∑
i∈[j] x(i) ≥

∑
i∈[j] z(i). Using additionally that both points z and x sum to

the same quantity, this implies that for every j ∈ [K],
∑K
i=j x(i) ≤

∑
i∈[j] z(i). The previous

inequalities taken with ∥z∥1 = ∥x∥1 means that x is majorized by any point z ∈ P . Therefore

by Karamata’s inequality, because x 7→ xp is strictly convex for p > 1, x is the unique minimizer

in P of the function

∑
i∈K z

p
i , which is simply ∥z∥pp.

To see that x also uniquely minimize the variance, it is enough to remark that for any z ∈ P ,

Var(z) = 1
K

∑
i∈[K](zi − 1

K

∑
l∈[K] zl)2 = 1

K

∑
i∈[K](zi − ∥x∥1)2 = 1

K ∥z∥
2
2 + (1 −

2/K)∥x∥21, which only depend on z through ∥z∥22, which is uniquely minimized by the leximin

optimal x.

Proof of Proposition 2.11

Let h = M[K]
K 1 ∈ F1. For anyw ∈ P and z = t1 ∈ F1, observe that

∥w − z∥22 = ∥(w − h)− (h− z)∥22 = ∥w − h∥22 + ∥h− z∥22 + 2⟨w − h|h− z⟩
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Because F1 and P are orthogonal, the scalar product is equal to zero:

⟨w − h|h− z⟩ =
∑
i∈K

(wi −
M[K]
K

)(
M[K]
K
− t) = (∥w∥1 −M[K])(

M[K]
K
− t) = 0.

Using the fact that ∥w∥22 = ∥w−h∥22+∥h∥22, we have that ∥w−z∥22 = ∥w−h∥22+∥h−z∥22 =
∥w∥22 − ∥h∥22 + ∥h − z∥22. Therefore, when projecting z onto P, we have that ∥w − z∥2 is

minimized when∥w∥2 is maximized, that is whenw = xusing Proposition 2.10. When projecting

w onto F1 ∩ co(M), we have that ∥w − z∥2 is minimized when ∥h− z∥2 is minimized, that is

when t = t∗ because t∗ ≤M[K]/K .

Proof of Proposition 2.12

We prove the desired equality by proving both inequalities. Let x∗ ∈ co(P) and y∗ ∈ H. By

reverse triangle inequality it follows,

max
x∈co(M)

∥x∥1 −max
y∈H
∥y∥1 = ∥x∗∥1 −max

y∈H
∥y∥1 ≤ ∥x∗∥1 − ∥y∗∥1 ≤ ∥x∗ − y∗∥1.

Since the left-hand side does not depend on the points x∗
and y∗

chosen, taking infimum on

both sides we obtain the first of the two inequalities. Conversely, let y∗ ∈ H so that ∥y∗∥1 =
maxy∈H ∥y∥1 and x∗ ∈ co(P) satisfying that x∗

i ≥ y∗
i for all i ∈ [K]. Then,

∥x∗ − y∗∥1 =
∑
i∈[K]

|x∗
i − y∗

i | =
∑
i∈[K]

x∗
i − y∗

i = ∥x∗∥1 − ∥y∗∥1

= max
x∈co(M)

∥x∥1 −max
y∈H
∥y∥1,

from where the second inequality follows by taking infimum. Finally, the existence of a point

(x, y) ∈ co(P)×H attaining the infimum is due to co(P) and H being compact sets on RK

and ∥ · ∥1 being a continuous function. Indeed, notice that both sets are bounded as they are

subsets of M (which is bounded as well as G is a finite graph), co(P) is the closed convex hull of

P, and H is closed by assumption.

Proof of Proposition 2.17

Let c∗
be the solution to Equation (2.1) and Λ∗

the corresponding set of groups. Without loss of

generality, let us take Λ = [ℓ], for ℓ ≤ K , and denote M̄ := maxi∈[K]Mi, m̄ := mini∈[K]Mi,

m̂ = M̄/m̄. It follows,

PoFO =
M[K]
M[ℓ]

·
∑
i∈[ℓ]Mi∑
i∈[K]Mi

=
(

1 + M1...ℓ+1 + ...+M1...K
M[ℓ]

)
·
∑
i∈[ℓ]Mi∑
i∈[K]Mi

≤ (1 + (K − ℓ)m̂) ℓ
K
m̂.
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Fig. 2.12: Tight bound example forM = 3,K = 4, and white squares as jobs

Since ℓ is integral, the function ℓ 7→ (1+(K−ℓ)m̂) ℓK m̂ reaches its maximum at ℓ∗ = K
2 + 1Kodd

2m̂ .

Plugging this in the previous bound, we get,

PoFO ≤
(

1 +
(
K

2 −
1Kodd

2m̂

)
m̂

)(1
2 + 1Kodd

2Km̂

)
m̂

=
(

1 + Km̂

2 − 1Kodd

2

)(
m̂

2 + 1Kodd

2K

)
= m̂

2 + 1Kodd

2K + Km̂2

4 + 1Kodd
m̂

4 − 1Kodd
m̂

4 − 1Kodd

4K

= m̂

2 + Km̂2

4 + 1Kodd

4K ,

which concludes the proof of the upper bound.

Now let us look at a tight counter-example. Suppose thatMi = M,∀i ∈ [K], forM ∈ N. Con-

sider a graph withM jobs connected toM⌈K2 ⌉ agents divided into ⌈K2 ⌉ groupsG1, ..., G⌈K/2⌉,

each group withM agents, forming a complete subgraph. In addition, consider ⌊K2 ⌋ subgraphs,

each of them composed of M jobs connected to M agents, each subgraph corresponding to

a different group G⌈K/2⌉+1, ..., GK . Figure 2.12 illustrates such a graph. An opportunity fair

matching can match at mostM/⌈K/2⌉ agents of each group due to the competition among the

first ⌈K/2⌉ groups. It follows

max
x∈FO

∥x∥1 = KM

⌈K2 ⌉
while max

x∈M
∥x∥1 = M +M

⌊K
2
⌋

=⇒ PoFO = (1 + ⌊K/2⌋)⌈K/2⌉
K

,

which is exactly
1
2 + K

4 + 1Kodd

4K .

Proof of Proposition 2.18

The first part of the proposition is immediate. Suppose PoFO > 1 then, as for the proof of

Theorem 2.15, the point (M1, . . . ,MK)/(K − 1) is feasible, yielding PoFO ≤ ρ(K − 1) ≤ 1
as ρ ∈ [1/K, 1/(K − 1)], which is a contradiction.

Suppose next that ρ ∈ [1/(K − 1), 1] and denote ∆ :=
∑
i∈[K]Mi − M[K] the additive

difference between the Utopian matching and the optimum one. By assumption we get ∆ =
(1− ρ)KM .
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Now let us compute c∗
. Without loss of generality (the same argument apply to other permuta-

tions) we consider the sequence of groups ([t])t∈[K−1], and define, for t ∈ [K − 1],

c(t) =
∑
i∈[t](M[i] −M[i−1])∑

i∈[t]Mi
,

withM0 = 0. Finally, denote by δi = Mi− (M[i]−M[i−1]), for i ∈ [K]. In particular, δ1 = 0.

For t ∈ [K − 1], it follows,

c(t) =
∑
i∈[t]M[i] −M[i−1]∑

i∈[t]Mi
=
∑
i∈[t]Mi −Mi +M[i] −M[i−1]∑

i∈[t]Mi
= 1−

∑
i∈[t] δi∑
i∈[t]Mi

= 1− ∆∑
i∈[t]Mi

+
∑K
i=t+1 δi∑
i∈[t]Mi

= 1− (1− ρ)K
t

+
∑K
i=t+1 δi
tM

≥ 1− (1− ρ)K
t

+ max
(

0, (1− ρ)K − (t− 1)
t

)
,

where we have used that

∑K
i=t+1 δi = ∆−

∑t
i=2 δi = (1−ρ)KM−(t−1)M . The maximum

being greater than 0 is equivalent to t ≤ (1 − ρ)K + 1. As t is an integer, it holds that for all

t ≤ ⌊(1 − ρ)K + 1⌋, c(t) ≥ 1/t. This function being decreasing, its value is always greater

than 1/⌊(1− ρ)K + 1⌋. Otherwise if t ≤ ⌈(1− ρ)K + 1⌉, the maximum is equal to 0, and

c(t) ≥ 1− (1− ρ)K/t, which is increasing in t, thus c(t) ≥ 1− (1− ρ)K/(⌈(1− ρ)K+ 1⌉).

This is valid for all permutations of increasing group sets. Note that the relaxed bound can simply

be obtained at this point by making t go to exactly (1 − ρ)K + 1 in both cases. Overall, we

obtain that c∗ ≥ min(1− (1− ρ)K/(⌈(1− ρ)K + 1⌉), 1/⌊(1− ρ)K + 1⌋). Simplifying this

expression as ⌈(1− ρ)K + 1⌉ = K + ⌈−Kρ⌉+ 1 = K − ⌊Kρ⌋+ 1 and ⌊(1− ρ)K + 1⌋ =
K + ⌊−Kρ⌋+ 1 = K − ⌊Kρ⌋, we get,

PoFO = ρKM

c∗KM
≤ ρmax

(
K − ⌊Kρ⌋+ 1
Kρ− ⌊Kρ⌋+ 1 ,K − ⌊Kρ⌋

)
≤ ρ((1− ρ)K + 1).

To end the proof, we provide and example to show the tightness of the bound, which is a continu-

ous parametrization of the one in Section 2.9.4. Consider a graph with ⌊Kρ⌋ − 1 independent

groups and that can matchM agents each, one partially independent group which can match

(Kρ− ⌊Kρ⌋)M nodes independently, and the rest of theK groups which must shareM jobs

between them and with (1− α)M agents of the partially independent group. It holdsMi = M

for all i ∈ [K] andM[K] = (⌊Kρ⌋+ α)M = ρKM .

Let us compute the value of the fair optimum. There are two distinct cases.

1. Kρ − ⌊Kρ⌋ ≥ 1/(K − ⌊Kρ⌋): The best identical fraction of the entitlement that the

K−⌊Kρ⌋ competing groups (without the partially independent group) can get is 1/(K−⌊Kρ⌋),

which is smaller than the number of matched agents that the partially independent group can get

alone. Hence, it is sub-optimal to share jobs with this group, implying that the fair optimum value
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is equal toKM/(K − ⌊Kρ⌋). In particular, we get PoFO = ρ(K − ⌊Kρ⌋). We claim that the

maximum in the upper bound is indeed this quantity. By assumption it holds (Kρ−⌊Kρ⌋+1) ≥
(K − ⌊Kρ⌋+ 1)/(K − ⌊Kρ⌋) which implies that

K − ⌊Kρ⌋+ 1
Kρ− ⌊Kρ⌋+ 1 ≤ K − ⌊Kρ⌋,

concluding this first case.

2. Kρ− ⌊Kρ⌋ ≤ 1/(K − ⌊Kρ⌋): In this case, some jobs need to be shared with the partially

independent group. Let fc and fp be the optimal fraction that should be given to a competing

group and to the partially independent group, respectively. We obtain the system of equations,

(K − ⌊Kρ⌋)fc + fp = 1,
fp +Kρ− ⌊Kρ⌋ = fc.

}
=⇒ (K − ⌊Kρ⌋+ 1)fc = Kρ− ⌊Kρ⌋+ 1,

This results in PoFO = ρ(K − ⌊Kρ⌋+ 1)/(Kρ− ⌊Kρ⌋+ 1). As done for the first case, we

can show using that the maximum in the upper bound is equal to this quantity.

Proof of Proposition 2.19

Let c∗
be the optimal value of Equation (2.1) and Λ∗

be the subset that attains the minimum. We

claim that Mσ
being non-increasing for every σ implies that Λ∗ = [K] and thus, PoFO = 1.

Consider σ = IK the identity permutation (for the rest of permutations the argument is the same

one), x = Pσ , and denoteBi := M[i]∑
j∈[i] Mj

. It follows,

Bi+1 −Bi =
M[i+1]∑
j∈[i+1]Mj

−
M[i]∑
j∈[i]Mj

=
∑
j∈[i](xi+1Mj −M(i+1)xj)(∑
j∈[i+1]Mj

)(∑
j∈[i]Mj

) .
SinceMσ

is non-increasing, for any j < i+ 1,

xj
Mj
≥ xi+1
Mi+1

⇐⇒Mi+1xj ≥ xi+1Mj =⇒ Bi ≥ Bi+1,

where the last implication comes from the fact thatBi+1 −Bi is the sum of only negative values.

Therefore, when computing mini∈[K]
M[i]∑
j∈[i] Mj

the minimum is attained by [K]. For the rest of

permutations the argument is the same. We conclude that Λ∗ = [K].

Proof of Proposition 2.20

Consider σ = IK the identity permutation and x = Pσ . For any other permutation the analysis

is analogous. We prove that Mσ
as defined in Proposition 2.19 is non-increasing by running

Algorithm 5. Let x1 be the maximum number ofG1 agents that can be matched. Match all of

them and take out of the graph all the matched vertices. The resulting graph is still complete and
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containsK − 1 groups. Let x2 be the maximum number ofG2 agents that can be matched in

the subgraph. Because the graph is complete there are three options:

1. x2 = M2 in which case all G2 agents can be matched. Match them all, take all the matched

vertices out of the graph, and repeat the procedure withG3.

2. x2 = 0 in which case the subgraph hasU = ∅ and then xi = 0 for all i ∈ {2, ...,K}.

3. M2>x2> 0. Match the x2 possible agents and take out of the graph all matched vertices. At

the following step, the only possible case is case 2.

In any case, the sequenceMσ
corresponds to a sequence of only ones (every time case 1 holds),

eventually an intermediary case where xi ∈ (0, 1) (when case 3 holds), and then all posterior

entries are zero (only case 2 holds). The sequenceMσ
is therefore, non-increasing. We conclude

using Proposition 2.19.

Proof of Proposition 2.21

We will use the following Theorem:

Theorem (Theorem 2.2 [FK16]). For any Erdös-Rényi random graph with p ≤ 1
ωn3/2 , where

ω = ω(n) → ∞ arbitrarily slow as n → ∞, G is a collection of edges and vertices with high
probability.

Denote p0 := maxi∈[K] pi and consider the non-bipartite random graph G0
as the graph ob-

tained with vertex set U ∪ V and edge probability p0. By the Theorem recalled in Appendix

Section 2.9.4, G0
is a collection of edges and vertices with high probability. The random bipartite

graphG is stochastic dominated
4

byG0
so, in particular, with high probability, it also corresponds

to a collection of isolated vertices and simple edges. It follows that for any i ∈ [K],M[i] =
i∑

j=1
Mj ,

which implies that for any σ, the sequenceMσ
as defined in Proposition 2.19, is constant equal to

1. We conclude that PoFO(G) = 1.

Proof of Proposition 2.22

We will use the following Theorem:

4

Stochastic dominance can be proved by using a coupling technique. For more details, please check Lemma 1.1

[FK16].
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Theorem (Theorem 6.1 [FK16]). Let p = log(n)+ω
n with ω = ω(n) → ∞ arbitrarily slow as

n→∞. Then limn→∞ P(G has a perfect matching) = 1.

We first show that |Gi| concentrates. The random variable |Gi| ∼ Bin(n, αi) corresponds to a

binomial random variable of parameters n and αi. In particular, E[|Gi|] = αin. By Hoeffding’s

inequality, as |Gi| can be written as the sum of i.i.d. Bernoulli random variables,

P
(∣∣|Gi| − αin∣∣ > √n log(n)

)
≤ 2 exp

(
−2(

√
n log(n))2

n

)
= 2
n2 −→n→∞

0.

RegardingMi, consider the bipartite subgraph containing only the agents inGi andU . Since pi ≥
log2(n)/n, Section 2.9.4 implies there exists a matching of size min(|Gi|, n) = min(αin, n)
and, therefore, Mi = min(αin, n). Finally, consider σ ∈ Σ([K]), match the first Mσ(1)

agents, and remove all matched vertices from G, leaving the set U with [n(1 − αi)]+ nodes.

Consider the second group σ(2). Because pσ(2) ≥ log2(n)/n, from Section 2.9.4, Mσ([2]) =
min(|Gσ(2)|, [n(1 − αi)]+). In other words, either Gσ(2) is totally matched and we move to

study the group σ(3), it is partially matched and so no agent inGσ(3) toGσ(K) can be matched,

or no agent inGσ(2) is matched. In any case, the sequenceMσ
consists on a sequence of ones,

eventually a value in (0, 1), and then a sequence of zeros. We conclude by Proposition 2.19.
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correlation of priorities
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3.1 Introduction

In this chapter, we study how different ranking correlation between different socio-demographic

groups—differential correlation – affects outcome inequality and efficiency in matching markets.

Our findings point to a before unacknowledged source of inequity between different groups that

is specific to matching markets and should be included in future assessments of, for example,

school, university, and job admissions. In particular, we find that differential correlation across

groups leads to outcome inequalities even when the rankings by each college are fair, i.e., all

groups are represented in each college’s ranking as they are in the total applicant population.

The resulting inequity is a form of systemic discrimination, i.e., discrimination that only arises

through the interaction of decision-makers—via the matching mechanism—and is not due to

either intentional or non-intentional discrimination by single decision-makers (cf. [Pin96; Fea13;

BHI22]).

Differential correlation arises when different decision-makers—say colleges—use different infor-

mation on candidates from different (socio-demographic) groups—say students—when assigning

priority scores to rank and admit them. This might be the case for several reasons.

First, the cost of information acquisition may vary across groups and some information may not

be available at all for some groups. Consider decentralized college admissions to competitive PhD

programs and compare foreign and local candidates. Several U.S. programs virtually reserve one

seat for the best foreign candidate from a given foreign school based on test scores and—due to

the high cost—do not perform in-person interviews (e.g., Iran’s Sharif University of Technology

or India’s IIT). Consequently, the priorities of foreign candidates at different programs are highly

correlated. By contrast, for local candidates grades from undergraduate alone may not provide

sufficient information—also due to grade inflation—and universities rely on idiosyncratic signals,

such as reference letters, extracurricular activities, or interviews during campus visits (which are

less costly as only local travel is required). Consequently, the priorities of local students, while

correlated, are less correlated than for foreign students.

Second, differences in correlation may also arise if colleges are looking for different attributes in

candidates and proxies of these attributes are more or less correlated for different groups. Consider

two colleges, one admitting students for mathematics, the other admitting students for physics.

Suppose that there are two groups; one group of students come from high schools where physics

is taught in a theoretical manner and the other group come from high schools where physics is

taught in an experimental manner and thus less mathematical. Consequently, the students from

the former group will exhibit higher correlation in their high school grades in mathematics and

physics than the students from the latter group.

Third, differences in correlation may also arise when colleges use selection criteria that are more

or less prevalent within different groups. Concretely, such criteria could include diversity with
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respect to the current student body, sibling priority, or proximity. Notably, such criteria are also

used in centralized school choice mechanisms, as, for example, in Chile [Mel22]. Consequently, a

group for which the criteria are more prevalent will exhibit higher correlation than a group for

which the criteria are less prevalent.

The latter criteria—sibling priority and proximity—along others are commonly used to break

ties. This allows to make a mechanism more explainable and only use random tie-breaking for a

smaller number of students (for whom all criteria are the same). Such random tie-breaking has

been studied in school choice problems [ACY15; ANR19; Arn23]. When students have the same

ranking at a given college a tie-breaking rule describes who should receive priority. Two natural

choices are that each college breaks ties independently or colleges use a common order to break

ties. Intuitively, the former leads to 0 correlation and the latter to correlation 1 (among those

students for whom tie-breaking is required). As we shall see, our work also allows to extend the

known theoretical results on tie-breaking to accommodate intermediate correlation levels, as often

present in practice.

3.1.1 Our contribution

We study the college-admissions problem, where multiple decision-makers select a subset of

applicants from an applicant pool with stability as the solution concept [GS62; AL16]. Concretely,

suppose that an infinite population of students divided into groupsGi . . . GK apply to colleges

A andB. Groups represent, for example, protected attributes, such as gender or race. Each college

assigns a priority score to each student. A given student gets priority scoresWA
at collegeA and

WB
at collegeB. We propose an original model for the distributions of these scores, to study the

correlation between the rankings made by the different colleges.

To formalize correlation and thus capture the vague notion of “a connection between two things

in which one thing changes as the other does",
1

we leverage prior work on copulas and their

relation with classical notions via coherence. This allows us to model correlation without a specific

functional form and, in particular, nest classical notions as special cases, e.g., Spearman’s and

Kendall’s correlation indices. With this at hand, we assume that the correlation between priority

scores at different colleges depends on a candidate’s group—we call this feature differential
correlation.

How does differential correlation impact a stable matching’s efficiency, i.e., the number of students
getting their first choice and inequality, i.e., the difference between groups in their probability to
remain unmatched? To answer this question, we first consider comparative statics. We show that

efficiency is increasing in each group’s correlation level, i.e., increasing the correlation level of

any group increases the amount of students getting their first choice in all groups (Theorem 3.7).

Moreover, the proportion of students from a given group remaining unmatched is increasing in

1

Oxford Advanced Learner’s Dictionary, 2023
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its own correlation level and decreasing in the correlation level of all other groups (Corollary 3.9).

This implies that it is advantageous to belong to the low-correlation group. We then show that

a given efficiency level can be reached by a continuum of different correlation vectors, yielding

different levels of inequality, thus showing that efficiency differences cannot explain inequality

(Proposition 3.10). Finally, our results imply extensions of known results on tie-breaking (cf.

[ANR19], [AN20], and [Arn23]), in particular to multiple priority classes and intermediate levels

of correlation (Proposition 3.11).

3.1.2 Further related literature

Matching. The college admission problem, i.e, how to assign prospective students to colleges

given each student’s preferences and colleges’ priorities over students and capacities such that the

outcome is stable, was introduced by Gale and Shapley [GS62]. A variant of this model where

colleges do not have priorities over students is commonly called the school choice problem, and

has been investigated in ([BS99], [AS03], [Abd05], [ES06], [Yen13]). The idea of considering a

continuum of students and a finite number of colleges has previously been exploited due to its

analytical tractability (cf., [CLS14], [ACY15], [AL16], [Arn22]). We follow [AL16] who develop a

supply and demand framework allowing to easily analyze the quality of a matching and deriving

comparative statics.

Matching with correlated types. We study matching in the presence of correlation between

the priority scores given by each college to a given student. A special case of this problem has been

studied for centralized school choice problems, where a lot of students have the same priority

and therefore ties are broken at random.
2

[ANR19; AN20], and [Arn23] compare the welfare of

students in two settings: either one common lottery is used by all colleges, or all colleges draw

independent lotteries. In our model, this corresponds to correlation 1 or 0, respectively, and

our results nest elements of these prior papers. Another line of work has considered correlation

between other features, e.g., correlation between students’ preferences and colleges’ rankings.

In this context, [BH22] focus on one-to-one matching and identify a matching that does not

favor one side over the other, while [CT19] and [LL20] study the stability-efficiency trade-off by

comparing Deferred Acceptance and Top Trading Cycles (see [SS74]), and how the magnitude of

this trade-off depends on the correlation between agents preferences and priorities. Considering

a transferable utility model, [Gol21] studies how workers sort into two competing sectors (such

that their wages are maximized) and the impact of technological change. While their model and

analysis is quite distant to ours, it shares the use of copulas to model correlation and the necessary

restriction to two sectors, respectively colleges.

Algorithmic monoculture. Finally, our work also contributes to a recent literature on al-

gorithmic monoculture, i.e., the fact that recommendations, choices, and preferences become

2

The implications of this feature on students’ welfare have been studied by [EE08; APR09] and [ACY15].
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homogeneous with the rise of algorithmic curation and analysis. [KR21] study the utility of mul-

tiple decision-makers who use algorithms to evaluate candidates. They show that decision-makers

are sometimes better off each using a different, low-precision algorithm than all using the same

high-precision one. In empirical work, [Bom+22] find that outcomes are more homogeneous

when models and training data sets are shared between decision-makers. Through our theoreti-

cal analysis we thus shed light on the impact of algorithmic monoculture from the candidates’

viewpoint.

3.1.3 Outline

This chapter is organized as follows. Section 3.2 introduces the model and the concept of differential

correlation. Section 3.3 introduces our welfare metrics and presents preliminary results. Our main

results are in Section 3.4. In Section 3.5, we discuss the extension of our results when there are

more than two colleges, and Section 3.6 details some special cases where additional results can be

provided. Finally, Section 3.7 concludes with a discussion on the generality of our findings and

future avenues of research.

3.2 Setup

We here introduce the college admission problem with a continuum of students, then formalize

the notion of correlation in Section 3.2.2, and introduce the supply and demand framework to

identify stable matching in Section 3.2.3. A summary of the main notation used in this chapter is

provided in Table 3.1.

3.2.1 Model

LetA andB be two colleges to which a continuum unit mass of students, S, is to be matched.

The mass of a subset of S is measured with a function η.
3

Colleges have maximum capacities of

the mass of students they can admit, (αA, αB) := α ∈ (0, 1]2. The students are divided intoK

groupsG1, . . . , GK , with a fraction γj ∈ [0, 1] of students belonging toGj , with

∑K
j=1 γj = 1.

Define the vector γ := (γj)j∈[K], using the notation [K] := {1, 2, . . . ,K}. We denote the

group to which a student s ∈ S belongs byG(s).

Students have strict preferences over colleges, and the amount of students preferring collegeA

might differ between groups: among groupGj , a share βj ∈ [0, 1] prefer collegeA to collegeB,

the remaining 1− βj preferB. When student s prefers collegeA to collegeB, we writeA ≻s B,

and vice versa. Note that βj is a share that is conditional on the group, and not a mass, for instance,

3

The formal definition of this measure is deferred to Appendix 3.8.2.
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η({s ∈ Gj : A ≻s B}) = γjβj . We assume that all students prefer attending some college to

remaining unmatched. We write β := (βj)j∈[K] as we did for γ.

Each college assigns a priority score to each student, the higher the better. Each student s thus is

assigned a vector of priority scores (WA
s ,W

B
s ). This means that collegeC prefers s ∈ S to s′

if

and only ifWC
s > WC

s′ . The (marginal) distribution of scoresWC
s given by collegeC to students

inGj is described by a probability density function (pdf) fCj defined over the support ICj ⊆ R,

assumed to be an interval. Let Ij = IAj × IBj . We denote by ICj and ĪCj the lower and upper

bounds of ICj . These bounds might be finite or not. We define f := (fA1 , . . . , fAK , fB1 , . . . , fBK ),

and denote by FCj the cumulative distribution function (cdf) associated to fCj .

Differential correlation Consider the joint distribution of the vectors (WA,WB). For each

groupGj , the grade vectors of students s ∈ Gj follow some distribution with pdf fj : Ij → R
and cdf Fj . A joint distribution can be characterized by its marginals, i.e., the distribution of each

component of the vector, and the shape of the joint distribution, captured by a coupling function,

called copula. A copula is a cdf over [0, 1]n, for somen, with uniform marginals. [Skl59]’s theorem

states that any joint distribution can be decomposed into (independent) marginals and a unique

copula:

Sklar [Skl59, Theorems 1, 2, and 3] LetF be a n-dimensional cdf with marginal cdfsF 1, ..., Fn.
Then there exists a unique n-dimensional copulaH : [0, 1]n → [0, 1] such that

F (x1, ..., xn) = H(F 1(x1), ..., Fn(xn)).

Conversely, for any n-dimensional copula H and for any set of n 1-dimensional cdfs F 1, ..., Fn,
F (x1, ..., xn) := H(F 1(x1), ..., Fn(xn)) is a n-dimensional cdf with marginalsF 1, ..., Fn.

Each groupGj then has a joint distribution with joint pdf fj and cdf Fj , that can be represented

by its marginals FAj , F
B
j and a (unique) copula Hj . We assume that there exists a family of 2-

dimensional copulas (Hθ)θ∈Θ (Θ being an interval [Θ, Θ̄] of R) and, for all j ∈ [K], there exists

a parameter θj ∈ Θ such thatHθj
is the copula associated toGj ’s distribution, i.e.,Hθj

= Hj .

This assumption is made without loss of generality, but some of our results will require additional

assumptions regarding the copula family. Denote by θ := (θj)j∈[K] the vector containing

each group’s parameter. Notice that each groups has a different θj , and thus a different joint

distribution. With some foresight to the explanations provided in Section 3.2.2, we call this feature

of the model differential correlation.
4

Finally, we assume that all the copulas in (Hθ)θ∈Θ have

full support over [0, 1]2. We write fj,θj
andFj,θj

instead of fj andFj as we will consider them as

functions of θ.

Given a family of copulas (Hθ)θ∈Θ, we then refer to the tuple (γ, β, α, f , θ) as the college admis-
sion problem. Note that we only assume that distributions admit a density and have full support,

4

This is in spirit of the notion of differential variance studied in [Eme+22] and [GLM21].
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that the distribution family is parameterized by a scalar, and that the marginals remain the same

for any θ. In Appendix 3.8.2 we discuss implications of these assumptions and provide details

of distributions that satisfy them (i.e., Gaussian copulas, Archimedean copulas and examples

thereof).

This model allows for each group to have different grade distributions at each college. Notice

that even though inside a given group the students preferringA have the same grade distribution

as students preferringB, this does not cause any loss of generality. Indeed, we can always split a

given group into two groups with different distributions.

3.2.2 Correlation and the coherence assumption

The proxy for correlation in our model will be the parameter θ, rather than some specific functional

form. We use a condition, namely coherence, on the family of distributions: whenever (fj,θ)θ∈Θ
is coherent, there exists a bijection between θj and classical measures of correlation. For details

on classical correlation measures, namely Pearson’s, Spearman’s, and Kendall’s correlation, see

Appendix 3.8.2.

Assumption 3.1 (Coherence). We say that a family of copulas (Hθ)θ∈Θ is coherent if for all
(x, y) ∈ (0, 1)2,Hθ(x, y) is strictly increasing in θ on Θ.

The following lemma states that under coherence θ is naturally interpreted as a measure of correla-

tion.

Lemma 3.1. If a family of copulas (Hθ)θ∈Θ is coherent, and (X,Y ) is a random couple drawn
according to Hθ , then ∀(x, y) ∈ (0, 1)2, P(X < x, Y < y) and P(X > x, Y > y) are
increasing in θ, while P(X < x, Y > y) and P(X > x, Y < y) are decreasing in θ.

Proof. Since Hθ(x, y) = P(X < x, Y < y) by definition, then the first part of the lemma is

just a rewriting of the definition of coherence. For the second part, we have

P(X > x, Y > y) = P(Y > y)− P(X < x, Y > y)

= P(Y > y)− P(X < x) + P(X < x, Y < y)

and P(Y > y),P(X < x) are constant in θ (Hθ are copulas therefore they all have uniform

marginals) whileP(X < x, Y < y) is increasing, soP(X > x, Y > y) is also increasing. Finally,

we also get that

P(X > x, Y < y) = P(Y < y)− P(X < x, Y < y)
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Fig. 3.1: Gaussian copula (i.e., bivariate Gaussian with marginals renormalized to uniform distributions,

cf. Appendix 3.8.2) for five different correlation levels, θ. The shades of blue represent the

distribution density (darker means higher).

and

P(X < x, Y > y) = P(X < x)− P(X < x, Y < y)

and both are thus decreasing. ■

Intuitively, whenX and Y are highly correlated, then if, for example,X is small then Y is likely

also small.

Further supporting the choice of θ as our measure of correlation, we note that there is an equiva-

lence between θ and two classical, ordinal measures of correlation, namely Spearman’s correlation,

denoted ρ, and Kendall’s correlation, denoted τ .

Scarsini [Sca84, Theorems 4 and 5] If (Hθ)θ∈Θ is coherent, and (Xθ, Yθ) are random variables
drawn according to Hθ , then Spearman’s and Kendall’s correlation coefficients ρ(Xθ, Yθ) and
τ(Xθ, Yθ) are strictly increasing functions of θ.

The above results show that, under the coherence assumption, θ is a bijection of classical measures

of correlation. To illustrate the effect of θ on a coherent distribution family, Figure 3.1 shows

draw from Gaussian copulas, which are coherent, with different values of the covariance used

as θ. When θ = 0 the variables are independent, when θ is positive the joint distribution gets

closer to the diagonal X = Y , and when θ is negative the joint distribution gets closer to the

diagonal Y = −X , which corresponds to the common idea of correlation as well as Spearman’s

and Kendall’s correlations. Since most of our results will be qualitative, they are stated using θ but

would still be true if θ was replaced by ρ or τ in the statement.

We finally introduce a technical assumption that will be required for some of our results, especially

when considering comparative statics in θ.

Assumption 3.2 (Differentiability). We say that (Hθ)θ∈Θ is differentiable if for all (x, y) ∈ I̊
and for all θ ∈ Θ̊, hθ(x, y) is differentiable in θ.
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The coherence and differentiability assumptions are not particularly restrictive, for instance the

Gaussian copula with covariance as the parameter verifies them, as well as Frenkel’s copula and

almost all example copulas mentioned in Appendix 3.8.2.

3.2.3 The supply and demand framework

In the Introduction (Section 1.1), we defined matchings as explicit lists of couples of agents, and

stability through the notions of justified envy and waste. A matching problem can be alternatively

viewed through a supply and demand lens, where a stable matching is a Walrasian equilibrium.

This characterization was first shown by Balinski and Sonmez [BS99], and was applied to the

continuum model by Azevedo and Leshno [AL16].

Definition 3.1 (Cutoffs and demand). If µ is a stable matching, define the cutoff atC ∈ {A,B}
as PC := inf{WC

s : µ(s) = C}. Given P = (PA, PB), we call the demand of student s,

denotedDs(P) ∈ {A,B} ∪ {s}, the college they prefer among those where their score is above

the cutoff, or themselves if their score does not exceed the cutoff at any college. The aggregate
demand at collegeC is the mass of students demanding it: DC(P) = η({s : Ds(P) = C}. We

denote by D the vector (DA, DB).

The cutoff of a college represents the score above which a student who applies gets admitted.

Recall that Ij = IAj × IBj is the support of fj,θ, IAj and ĪAj the lower and upper bounds of

IAj ,and same forB. IfPC = min
j∈[K]

ICj , then collegeC rejects no one, ifPC = max
j∈[K]

ĪCj it accepts

no one. The supply associated to this demand is simply the capacity of each college.

Consider the equilibria of this problem:

Definition 3.2 (Market clearing). The cutoff vector P is market clearing if for C ∈ {A,B},
DC(P) ≤ αC , with equality if PC > min

j∈[K]
ICj .

A cutoff vector is therefore market-clearing if it induces a demand that is equal to colleges’ capacities

when they reach their capacity constraint, and lower for colleges that are not full. When the

constraint is reached at both colleges, i.e., when αA + αB < 1, the system

D(P) = α (3.1)

is called the market-clearing equation, and the market-clearing cutoffs PA and PB can be com-

puted by solving the system.

The following result from [AL16] establishes the link between market-clearing cutoffs and stable

matchings:
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Fig. 3.2: Cutoff representation of stable matchings. Students in the hashed area are matched to college

A, those in the dotted area to collegeB, and those in the white area remain unmatched.

Azevedo and Leshno [AL16, Lemma 1]

1. If µ is a stable matching, the associated cutoff vector P is market-clearing;

2. If P is market-clearing, we define µ such that for all s ∈ S, µ(s) = Ds(P). Then µ is stable.

This allows to analyze stable matchings by studying the cutoffs of each college. Figure 3.2 illustrates

the link between the cutoffs and the matching: students who preferA get admitted there if and

only if their scoreWA
is higher than the cutoff PA. Otherwise, they get admitted toB if their

score WB
is higher than PB , and stay unmatched if it is not. The situation is symmetric for

students preferring collegeB.

In the continuous college admissions problem the same authors show that there is a unique stable

matching.

Lemma 3.2 (Special case of [AL16, Theorem 1]). For any college admission problem (γ, β, α, f , θ),
there exists a unique stable matching.

Note that the original theorem specifies conditions on the distribution of students’ types, such as

being continuous and having full support, which hold in our definition of a college admission

problem. Unlike the finite case where typically several stable matchings exist, in the continuum

model the stable matching is unique and therefore no considerations regarding selection among

the set of stable matchings are necessary. From now on, we will therefore consider the cutoff

vector P as the one uniquely determined by the parameters of the problem and the market-clearing

equation. We shall say student s goes to collegeC to mean that they are matched to collegeC in the

unique stable matching.
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[AL16] further show that the stable matching varies continuously in the parameters of the problem

and that the set of stable matchings from a college admission problem with a finite number of

students converges to the unique stable matching of the continuum problem with the same

parameters. The latter result justifies the approximation of large finite instances by their limit.
5

3.3 Welfare metrics and preliminary results

In selection problems, inequalities between groups are measured by the proportion of admitted

candidates in each group. In a matching setting, the situation is more complex: on the one hand,

one group might have a higher proportion of unmatched students than the other, but on the

other hand, the proportion of students getting their first choice might also differ. If all students in

a group get their first choice and all students in the other get their second choice, the matching

may be deemed unfair. In this section, we define metrics that allow us to quantify the satisfaction

of students from each group.

Consider an individual’s likelihood of getting their first choice, second choice, or being rejected

from both colleges in a stable matching as a function of differential correlation.

Definition 3.3 (Welfare metrics). Under a stable matching µθ induced by differential correlation

parameters θ, define V
Gj ,A

1 (θ) and V
Gj ,B

1 (θ), as the proportion of students from each group-

preference profile who get their first choice. Formally,

V
Gj ,A

1 (θ) := 1
γjβj

η({s ∈ Gj : A ≻s B,µθ(s) = A}),

V
Gj ,A

2 (θ) := 1
γjβj

η({s ∈ Gj : A ≻s B,µθ(s) = B}),

V
Gj ,A

∅ (θ) := 1
γjβj

η({s ∈ Gj : A ≻s B,µθ(s) = ∅}).

The metrics for students preferring collegeB are defined similarly, by inverting the roles ofA and

B and replacing βj by 1− βj in the equations.

Those metrics can be thought of in two ways: V
Gj ,A

1 (θ), for instance, is the relative mass of

students getting their first choice among those in groupGj who prefer collegeA, or equivalently,

it is the probability of a randomly drawn student to get their first choice conditionally on belonging

toGj and preferringA.
6

5

For a better approximation for instances with a small number of students, [Arn22] proposes a related framework.

6

We condition over preferences because of the following observation: assume there are two groups, if students

from group G1 all prefer college A, but only half of the students from group G2 prefer A, and A has a low capacity

and B a large one. Then very few students from G1 will get their first choice while half of the students from G2 are

likely to get their first choice since it is a less demanded college. Thus students’ satisfaction might differ across groups

only due to their own preferences, and not because of differential correlation.
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We next provide expressions for these metrics for the unique (cf. Lemma 3.2) stable matching µθ

via its cutoffs, P.

Lemma 3.3. LetC ∈ {A,B} be a college,C be the other college, andGj be a group. Let P be the
cutoffs associated to µθ , we have:

V
Gj ,C

1 (θ) = Pj(WC ≥ PC(θ)), (3.2)

V
Gj ,C

2 (θ) = Pj,θj
(WC < PC(θ),WC ≥ PC(θ)), (3.3)

V
Gj ,C

∅ (θ) = Pj,θj
(WC < PC(θ),WC < PC(θ)). (3.4)

Proof. Consider student s ∈ Gj who prefers collegeA. By Lemma 1 from [AL16] (cf. Section

3.2.3), s is admitted toA if and only if s ∈ DA(P), i.e., if and only if their score atA is greater

than PA. Then by definition of η,

V
Gj ,A

1 (θ) = η({s ∈ Gj : A ≻s B,µ(s) = A})
γjβj

= Pj,θj
((WA,WB) ∈ [PA,+∞)× R)

= Pj(WA > PA).

The same reasoning applies to V
Gj ,B

1 if s prefersB, which proves (3.2).

The same student s is admitted toB if and only if s ∈ DB(PA, PB), i.e., if and only ifWB
s ≥

PB andWA
s < PA. Then we have

V
Gj ,A

2 (θ) = η({s ∈ Gj : A ≻s B,µ(s) = B})
γjβj

= Pj,θj
((WA,WB) ∈ (−∞, PA)× [PB,+∞)).

The same reasoning applies to V
Gj ,B

2 , which proves (3.3).

Student s remains unmatched if and only ifWA
s < PA andWB

s < PB . Then we have

V
Gj ,A

∅ (θ) = η({s ∈ Gj : A ≻s B,µ(s) = s})
γjβj

= Pj,θj
((WA,WB) ∈ (−∞, PA)× (−∞, PB)).

which proves (3.4). ■

The notation Pj,θj
is used as shorthand for P(WA,WB)∼fj,θj

. Lemma 3.3 allows to compare

probabilities of admission of different types of students, and derive comparative statics with

respect to differential correlation.
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Regarding the probability of staying unmatched, we can derive a simple yet important result.

Lemma 3.4. The probability that a student remains unmatched depends only on their group and
is independent of their preference. Moreover, the total mass of unmatched students is constant in
any group’s correlation level. Formally, let P be associated to µθ . Then, for j ∈ [K], V Gj ,A

∅ (θ) =
V
Gj ,B

∅ (θ); and η({s ∈ S : µθ(s) = ∅}) = max(0, 1− αA − αB) (which does not depend on
θ).

Proof. It is sufficient to notice that Equation (3.4) is symmetric in C and C̄ to obtain the first

part of the lemma. The second one follows from the fact that either there is excess capacity and

everyone is matched, or both colleges are full and the mass of matched students is the sum of the

capacities. ■

Remark 3.1. The first part of Lemma 3.4 could also be derived from the strategy-proofness for

students of the student-proposing deferred acceptance algorithm [Rot85]. Indeed, the fact that

students cannot improve their outcome by modifying the order of their preferences implies that

them being unmatched or not does not depend on which college they reported to be their first

choice.

With Lemma 3.4 at hand, we will use the notation V
Gj

∅ , since these quantities do not depend on

the preference of students. For all the metrics we defined, when there is no ambiguity, we also

omit the dependence on θ and write V
Gj ,C
i instead.

We now define two global metrics, i.e., metrics that are not conditioned on the groups and

preferences of student, namely efficiency and inequality:

Definition 3.4 (Efficiency and Inequality). Define the efficiency E(θ) of a matching as the

proportion of students getting their first choice, and the inequality LGi,Gj (θ) between two

groups, i, j ∈ [K] as the difference of the probability of staying unmatched between those two

groups:

E(θ) = η
(
{s ∈ S : µθ(s) = C andC ≻s C̄}

)
=
∑
j∈[K]

γjβjV
Gj ,A

1 (θ) +
∑
j∈[K]

γj(1− βj)V
Gj ,B

1 (θ) (3.5)

LGi,Gj (θ) = |V Gi

∅ (θ)− V Gj

∅ (θ)|. (3.6)

By Lemma 3.4 the mass of unmatched, and therefore matched, students is constant, and thus

matched students get either their first or second choice. Therefore, ceteris paribus, it is desirable to
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maximize the mass of students getting their first choiceE. Regarding inequality, we measure the

inequality between two groups by the difference in their proportions of unassigned students.

Proposition 3.5. If two groups have the same marginal distributions at some collegeC , then for
students whose first choice is collegeC the probability of getting this college is the same for students of
both groups. Formally, if fCj = fCℓ , then V Gj ,C

1 = V Gℓ,C
1 .

Proof. The result follows directly by applying (3.2) to both groups, and by observing that the

integral in (3.2) depends on θ only through the cutoff vector P. Therefore, if groupsGi andGj

have the same marginal FCj at collegeC , then V Gi,C
1 = V

Gj ,C
1 . ■

Proposition 3.5, albeit simple, is an important property of the model. If two students prefer the

same college, their probabilities of getting it only depend on their respective groups’ marginals, and

not on their correlation levels — so differential correlation has no effect on this metric. Proposition

3.5 also justifies the choice ofL as a measure of inequality: the proportion of students getting their

first choice is the same for two groups as long as they have the same marginals, and differences

only emerge in second choice admittance versus remaining unmatched. Consequently, when the

proportion of unmatched students is higher in one group than the other, then the matching is

unequal.
7

The following result shows that if there is capacity excess, differential correlation does not affect

the stable matching.

Proposition 3.6. If capacity is not constrained, i.e., αA + αB ≥ 1, then correlation has no effect
on the stable matching. The cutoffsPA andPB are constant in θ, on then so are V Gj ,C

1 and V Gj ,C
2

for all j andC . Moreover, V Gj

∅ = 0, therefore ∀i, j ∈ [K],LGi,Gj (θ) = 0.

Proof. The value of V1 comes from Lemma 3.3. If αA + αB ≥ 1, then all students are admitted

to some college, therefore V
Gj

∅ = 0 for all j. Moreover, either PA = min
j
IAj or PB = min

j
IBj ,

or both. Let us suppose the former holds. Then

V
Gj ,A

1 = 1− FAj (min
j
IAj ) = 1

V
Gj ,A

2 = 0

7

Another choice to measure inequality could be to compare the proportions of students getting their second

choice in each group, however Proposition 3.5 implies that this quantity is equal to L.
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and

V
Gj ,B

1 = 1− FBj (PB)

V
Gj ,B

2 = FBj (PB).

It remains to show that PB is constant in θ. Define

T : x ∈ R 7→
∑
j

γj(1− βj)
(
1− FBj (x)

)
.

Note that since all FBj are invertible T is invertible too. Since all students preferring A get it,

the market clearing equation for B becomes T (PB) = αB , i.e., PB = T−1(αB). From this

relation it appears that PB is indeed constant in θ. The same reasoning applies if PA ̸= min
j
IAj

and PB = min
j
IBj . ■

More detail about this case can be found in Section 3.6.1.

3.4 Main results

This section contains our main results on the impact of differential correlation on the properties of

stable matchings. We consider college admission problems where γ, β andα are assumed constant,

and study the influence of differential correlation, θ, on the stable matching. Section 3.4.1 contains

general comparative statics and Section 3.4.2 studies tie-breaking.

3.4.1 Comparative statics

We first consider how the efficiency of the matching, i.e., the probability of getting one’s first

choice, varies when changing the correlation for one group.

Theorem 3.7. Suppose that (Hθ)θ∈Θ is coherent and differentiable, and thatαA+αB < 1. Then
for all groups and all preferences the proportion of students getting their first choice is increasing in
all correlation parameters θj , j ∈ [K], and consequently so is the global efficiencyE(θ). Formally,
suppose that θ ∈ (Θ̊)K . Then for anyC ∈ {A,B}, for any j, ℓ ∈ [K], V Gj ,C

1 (θ) is differentiable
and

dV
Gj ,C

1 (θ)
dθℓ

> 0.
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The immediate consequence is thatE(θ) is differentiable and for any j ∈ [K],

dE(θ)
dθj

> 0.

The proof relies on the following lemma:

Lemma 3.8. Suppose that θ ∈ (Θ̊)K . Then for anyC ∈ {A,B}, PC(θ) is differentiable and

dPC(θ)
dθj

< 0 ∀j ∈ [K].

Proof sketch. The proof follows several steps. First, we rewrite the market-clearing Equation

(3.1) using Lemma 3.3. We obtain a system of two equations, where the variables are the cutoffs

PA and PB , parameterized by θ. We then apply the implicit function theorem to a mapping

whose roots are the solution of this system of equations. We next compute the partial derivatives.

To characterize the sign of the derivatives with respect to θ, we use the coherence assumption.

Through analytical derivations, we can conclude. The proof is provided in Appendix 3.8.3. ■

Proof of Theorem 3.7. From Lemma 3.8, the cutoffs are decreasing in each θj . We can then con-

clude that for any j ∈ [K] and forC ∈ {A,B},

dV
Gj ,C

1
dθj

=
d
∫∞
PC fCj (x) dx

dθj
=
d
∫∞
PC fCj (x) dx
dPC

· dP
C

dθj
> 0. ■

Theorem 3.7 implies that, if the correlation decreases for one of the groups, then all groups suffer

from a decrease in first-choice admittance. Conversely, increasing the correlation for one group

leads to an increase in first-choice admittance for all groups.

Intuitively, when the correlation increases, students’ score vectors accumulate close to the diagonal,

and therefore in the lower-left and upper-right quadrants, while the other two quadrants are

increasingly empty. This phenomenon is illustrated in Figure 3.3 with a bivariate Gaussian distri-

bution. If the cutoffs did not change, then the amount of unmatched students would increase. As

the capacities are assumed constant this would renter the resulting matching unstable. Therefore,

at least one of the cutoffs decreases and, in fact, Lemma 3.8 implies that both decrease. As a

consequence, the mass of matched students remains the same but more students get their first

choice.
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Fig. 3.3: Illustration the cutoff shift described in Lemma 3.8. The distribution of groupGi is a bivariate

Gaussian with θ equal to the covariance: θ1 = 0 in the left-hand figure and θ′
1 = 0.8 in the

right-hand figure. PA
is represented as a vertical line andPB

as an horizontal line. Both cutoffs

decrease as θ1 increases. In each sub-figure, the cutoffs corresponding to the current value of θ1
are represented as full lines and the cutoffs corresponding to the other value of θ1 as dashed

lines.

Remark 3.2. The formal statement of Theorem 3.7 excludes the extremities of Θ. This assump-

tion is made only to avoid the case where rankings are fully correlated, which would mean that f
does not have full support. However, since V A

1 and V B
1 are continuous in θ, they are increasing

on the whole interval Θ.

Theorem 3.7 allows us to derive the following corollary regarding a student’s probability of

remaining unmatched.

Corollary 3.9. Suppose that (Hθ)θ∈Θ is coherent and differentiable, assume θ ∈ Θ̊K and αA +
αB < 1. Then the proportion of students from a given group remaining unmatched is increasing in
its own correlation level and decreasing in the correlation level of all other groups: for i, j ∈ [K],
i ̸= j,

dV Gi

∅ (θ)
dθi

> 0 and
dV Gi

∅ (θ)
dθj

< 0.

Moreover, the inequality between two groups is decreasing in the correlation level of the group with
lowest rate of unmatched students and increasing in the other group’s correlation level. Formally,
assume V Gi

∅ (θ) < V
Gj

∅ (θ). Then

dLGi,Gj (θ)
dθi

< 0 and
dLGi,Gj (θ)

dθj
> 0.
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Proof. By Lemma 3.8, PA and PB are decreasing in both θ1 and θ2, thus for i ̸= j ∈ [K]:

dV
Gj

∅
∂θi

=
dPj,θj

(WA < PA,WB < PB)
dθi

=
(
∂ Pj,θj

(WA < PA,WB < PB)
dPA

,
∂ Pj,θj

(WA < PA,WB < PB)
dPB

)
·
(
dPA

dθi
,
dPB

dθi

)T
< 0.

Since the total capacity (of the two colleges) is constant, the mass of unmatched student must also

be constant. Therefore, we have

γiV
Gi

∅ +
∑
j ̸=i

γjV
Gj

∅ = 1− αA − αB.

By differentiating this equation we get

γi
dV Gi

∅
dθi

+
∑
j ̸=i

γj
dV

Gj

∅
dθi

= 0

⇔
dV Gi

∅
dθi

= − 1
γi

∑
j ̸=i

γj
dV

Gj

∅
dθi

⇒
dV Gi

∅
dθi

> 0

which proves the first part of Corollary 3.9. Moreover, sinceL(Gi, Gj) = |V Gi

∅ − V Gj

∅ |, assume

that V Gi

∅ < V
Gj

∅ , then L(Gi, Gj) = V
Gj

∅ − V Gi

∅ , and using the first part of the result we get

that
dL(Gi,Gj)

dθi
< 0 and

dL(Gi,Gj)
dθj

> 0, which proves the second part. ■

Remark 3.3. As a consequence, for any two groupsGi, Gj , if θi ̸= θj then the matching almost

surely exhibits inequality for those groups (LGi,Gj (θ) > 0). In particular, this is true even when

those groups have the same marginals.

The probability of staying unmatched is different for students from different groups, even with

identical marginals. This is in contrast to Proposition 3.5. Different levels of correlation lead to an

unequal matching. This is the case as with identical marginals the proportion of students above

some cutoff is the same in every group, but for a group with high correlation, the set of students

above the cutoff is almost the same at each college, while for a group with low correlation those sets

are quite different at each college. Therefore, the set of matched students in groupGj , which is

{s ∈ Gj |WA
s ≥ PA}

⋃
{s ∈ Gj |WB

s ≥ PB}, is larger for groups with lower correlation. This

result is quite counter-intuitive: consider the point of view of some collegeC , which has identical

marginals for all groups. FromC’s point of view, there is no difference between the groups, and

the proportion of students withWC
s ≥ PC is the same across all groups. However, Corollary 3.9

implies that the groups with the lowest correlation levels are going to be overrepresented atC ,
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and the groups with the highest correlation underrepresented. CollegeC then ends up with a set

of student that could be deemed “unfair" regarding demographic parity, whileC ’s ranking was in

fact perfectly fair.

Corollary 3.9 helps understand the influence of correlation on inequality. When correlation levels

of two groups are equal and marginals are identical, there is no inequality. If marginals are different,

there is some “baseline" inequality that can be increased or decreased by changing the correlation

levels: to decrease the inequality one would need to increase the correlation of the group with

the lowest proportion of unassigned student (therefore the better-off group) and/or decrease

the correlation of the worse-off group. Overall, even when colleges have fair rankings (identical

marginals across all groups), the matching might still exhibit inequality.

Theorem 3.7 and Corollary 3.9 study efficiency and inequality separately. The following proposi-

tion describes their interaction. Concretely, different correlation vectors, θ, can lead to the same

efficiencyE, while inducing different inequality levels between groups. This shows that the effect

of differential correlation cannot be solely explained via differences in efficiency.

Proposition 3.10. Suppose that (Hθ)θ∈Θ is coherent and differentiable, assume Θ, andαA+αB <

1. Let θ = (θ1, . . . , θK), and Ê = E(θ).

1. There exist infinitely many correlation vectors achieving a given efficiency. Formally, the
set of vectors θ′ such that E(θ′) = Ê is a connected hypersurface of dimension K-1 (unless
θ = (Θ . . . ,Θ) or (Θ̄ . . . , Θ̄) , in which case it is a singleton).

2. Fixing efficiency, correlation levels are substitutes. Formally, for any two groups Gi, Gj ,
there exists an interval U := [θ, θ̄] ⊆ Θ and a differentiable and decreasing function
ϕ : U → Θ such that (θi ∈ U and θj = ϕ(θi)) =⇒ E(θ) = Ê. The boundaries
of U are optimal/pessimal with respect to the mass of unassigned students (V Gi

∅ , V
Gj

∅ ) for
Gi respectively Gj and there is a unique θ̂ ∈ U such that θ1 = θ̂, θj = ϕ(θ̂) minimizes
inequalityLGi,Gj (θ).

Proof. V1 is a convex combination of the first choice functions that are increasing in all θj . More-

over it is continuous, and we assumed Θ to be an interval, so the set of possible values for V1 is an

interval, say [V min
1 , V max

1 ]. Fix V ∈ (V min
1 , V max

1 ), and consider the solutions of the equation

V (θ) = V . By continuity, this equation has a solution. The implicit function theorem applied

to express some θj (the choice of j does not matter) as a function ϕ of all the other elements

of θ shows that the solutions of V (θ) = V is a connected subset of ΘK
, and also a hypersur-

face because the function ϕ is monotonous in all θi (this comes from the fact that V1 is itself

monotonous). This proves the first part of the proposition.
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Fig. 3.4: Variations of efficiency (E) and (L) for two groups (G1, G2) as a function of their respective

correlation parameters (θ1, θ2); with standard Gaussian marginals and copula with θ equal

to the covariance. Other parameters: αA = αB = 0.25, γ1 = γ2 = 0.5, β1 = β2 = 0.5.

Left:The surface represents the efficiency and the level lines indicate constant efficiency (also

projected to the bottom of the figure). Right: The surface represents the inequality.

Let us choose two groups Gi, Gj , and fix all θℓ for ℓ ̸= i, j. We apply the implicit function

theorem to express θj as a function of θi, which shows that there exists an intervalU := [θ, θ̄] ⊆ Θ
and a differentiable function ϕ : U → Θ such that (θi ∈ U and θj = ϕ(θi)) =⇒ V1(θ) = V .

Since V (θ) is increasing in all arguments, ϕ is necessarily decreasing. If we keep θj = ϕ(θi),

then

dV
Gi

∅
dθi

= ∂V
Gi

∅
∂θi

+ ∂V
Gi

∅
∂θj

ϕ′(θi), which is positive by Corollary 3.9, so (θi, θj) = (θ, ϕ(θ)
minimizes V Gi

∅ , and (θi, θj) = (θ̄, ϕ(θ̄) maximizes it. The same reasoning shows that those

two points respectively maximize and minimize V
Gj

∅ . Finally, since V Gi

∅ is increasing and V
Gj

∅
decreasing,L(Gi, Gj) = |V Gi

∅ − V Gj

∅ | has a unique local (and therefore global) minimum. ■

Beyond the intuition that correlation favors efficiency, Proposition 3.10 provides a precise insight

to the relation between efficiency and inequality and the trade-off between the two. The first

part states that there is, in general, a continuum of correlation vectors achieving the same level

of efficiency. The second part considers the comparative statics between two groups. Fixing the

efficiency, correlation parameters behave as rival goods. As the correlation increases for one groups

it necessarily decreases for the other group.

Figure 3.4 illustrates this for two groups, G1, G2, with standard Gaussian marginals and the

parameter of the copula, θ, equal to the covariance. The left panel shows the efficiency and the

right panel shows the inequality as functions of θ1, θ2. In the left panel, the level lines show the

decreasing relation between θ1 and θ2 whenE is kept constant. In the right panel, the inequality

is minimized along the diagonal where θ1 = θ2 and increases as the parameters become more

disparate.
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3.4.2 Tie-Breaking

Some recent papers have studied the impact of tie-breaking rules on school choice problems, which

has a strong link with correlation. In this section, we extend some of the prior results and discuss

the relation to the literature.

Assume there is only one group, and each school C has nC priority classes, i.e., there exists a

partition of S = QC1
⊔
· · ·
⊔
QCnC

such that for i, j ∈ {1, . . . , nC}, s ∈ QCi , s′ ∈ QCj , s has

higher priority than s′
atC if i < j. Students belonging to the same priority class at a school are

assumed to have the same priority at this school, but due to limited capacity the school might need

to choose between them. To achieve this, schools use a random ranking of students to which they

refer each time they need to choose between students from the same priority class; this random

ranking is called a tie-breaker.

A natural question that has been actively studied in recent years is whether there is a difference in

students’ welfare if schools use the same tie-breaker (called single tie-breaker, or STB), instead of

each producing an independent one (multiple tie-breakers, or MTB). [ANR19; AN20; Arn23]

show — with slightly different models and assumptions (and among other results) — that when

the total capacity of schools is lower than the number of students, then students are better off

under STB than MTB. To ease the comparison, we restate their results here in a simplified form.

Given n students andm schools:

• [ANR19, Main Theorem]: Suppose that there is capacity shortage, students’ preferences

are drawn uniformly at random and there is only one priority class (the whole ranking is

random), then for any k < m, as the number of students and total capacity of colleges both

grow to infinity the fraction of students matched to one of their top k choices approaches

0 under MTB but approaches a positive constant under STB.

• [AN20, Theorem 3.2]: Suppose there is one slot per school, only one priority class, and

schools are divided into two tiers (top and bottom) with students’ preferences inside a given

tier drawn uniformly at random and a capacity shortage at top schools, then, with high

probability, STB stochastically Pareto-dominates MTB.

• [Arn23, Theorem 2]: Suppose there is only one priority class and students only list l < m

schools in a uniform random order, then the number of students matched to their first

choice is greater under STB than under MTB.

Our model, compared to prior work on tie-breaking, allows to for any number of priority classes,

intermediate levels of correlation or even negative correlations, and several groups of students

with different tie-breaking rules. To this end, let (Hθ)θ∈Θ be a coherent and differentiable family

of copulas such that θ = 0 gives independent random variables, θ = 1 fully correlated variables
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and θ = −1 full negative correlation. Define the θ-TB as the tie-breaker drawn according toHθ.

Thus, MTB corresponds to θ = 0 and STB to θ = 1. Moreover, we can assume the existence of

several groups with different θ.

Intermediate correlation levels can arise in tie-breaking if, for example, student characteristics

are introduced into rankings to break ties, e.g., sibling priority or distance to from home to

school [Cor+22]. This is commonly done to render algorithms more deterministic and thus

understandable. Consider priority for students with lower distance to a school and suppose that

there are two villages with one school each. Then, ceteris paribus, a student who lives in one village

exhibits negative correlation between the grades at each of the two schools. On the other hand, a

student living in neither village may exhibit any level of correlation. Note that this example also

illustrates how negative correlation naturally arises.

Proposition 3.11. Let there be a continuum mass of students and assume that students prefer any
school over being unmatched. LetA,B be two schools with nA, nB priority classes, and constrained
capacities αA + αB < 1. Further suppose that students are divided intoK groups, such that the
θj -TB is used for groupGj . Then:

1. The mass of students getting their first choice

• is non-decreasing in each θj ,

• is almost surely strictly increasing in all θj , if all products of priority classesQAi ×QBj
contain a positive mass of students of each group,8 and

• is strictly increasing in each θj , if there is only one priority class.

2. The inequality between two groups,LGi,Gj (θ), is non-decreasing in the correlation θ of the
group with the lowest V∅, and non-increasing in the other group’s θ.

Proof sketch. We build a distribution family that encompasses the priorities of students at each

school taking into account priority classes as well as tie-breakers, such that MTB and STB corre-

spond to values of θ = 0 and θ = 1. The obtained distribution, while being complex, still satisfies

most of the assumptions required by our model, and with some adjustments we are able to apply

Theorem 3.7 and Corollary 3.9 and conclude. The proof is provided in Appendix 3.8.3. ■

This result shows that increasing the correlation of tie-breakers, for one or several groups, increases

the amount of students getting their first choice. Moreover, it also shows that a policy maker able

8

More precisely, the set of vectors (γ, β, α) such that the mass of students getting their first choice is constant in

some θj has Lebesgue measure 0.
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to change the correlation of tie-breakers for some groups can use it to mitigate the inequalities

between groups.

Proposition 3.11 is in some regards more restrictive than the results from the literature presented

above, because it only applies to two schools and assumes students prefer either school over being

unmatched. On the other hand, it is more general in that it applies to cases with several priority

classes and does not require students preferences to be uniform (in our model, we can have any

fraction β of students preferring schoolA). It also allows to have several groups with different

tie-breaking rules. Finally, Proposition 3.11 allows for intermediate tie-breaking rules interpolating

between MTB and STB, and also for negatively correlated tie-breaking rules.

Remark 3.4. The reason for Theorem 3.7 not completely applying, which explains the use of

"almost surely" in Proposition 3.11, is that in the case where a cutoff falls exactly in between two

priority classes, then there is no need to break ties at this school, and the correlation of the tie-

breaker naturally does not play a role anymore. We consider that this is almost surely not the case

in the sense that the set of capacities at each school and preferences of students that would lead to

this situation has zero mass in the space of all possible values for those parameters.

3.5 Extension to more than two colleges

In this section, we discuss the extension of our results to more than two colleges.

3.5.1 Model

We start by proposing an extension of the model for more than two colleges, since it is not

straightforward and choices have to be made.

The set of colleges becomes C = {C1, . . . , Cm}. Colleges have respective capacitiesα1, . . . , αm ∈
(0, 1], we call α the vector containing colleges capacities. Each student has strict preferences over

colleges: when student s prefers collegeC to collegeC ′
, we writeC ≻s C ′

. This preference list

can also be represented by a permutation σs ∈ Σ([m]), where σ(1) is the favorite college and

σ(m) the least favorite. For any σ, the amount of students with preference list σ among group

Gj is βσGj
∈ (0, 1). We call βGj the vector (βσGj

)σ∈Σ([m]). Each collegeCi assigns a priorityW i

score to each student, the higher the better. Each student s then has vector of priority scores

(W 1
s , . . . ,W

m
s ). This means that collegeCi prefers s ∈ S to s′

if and only ifW i
s > W i

s′ .

Regarding the distribution of grades, the model has a natural extension. The marginal distribution

of scores W i
s given by college Ci to students s in Gj is described by a pdf f ij defined over the
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support Iij ⊆ R, assumed to be an interval. Let Ij =
∏

i∈[m]
Iij . We denote by Iij and Īij the lower

and upper bounds of Iij , and by F ij the cdf associated to f ij .

As before, each groupGj then has a joint distribution with joint pdf fj and cdf Fj , that can be

represented by its marginals (F ij )i∈[m] and a (unique) copulaHj . We assume that there exists a

family of m-dimensional copulas (Hθ)θ∈Θ and, for all j ∈ [K], there exists a parameter θj ∈ Θ
such that Hθj

is the copula associated to Gj ’s distribution, i.e., Hθj
= Hj . The coherence

assumption remains the same: we say that (Hθ)θ∈Θ is coherent if for all x ∈ (0, 1)m,Hθ(x) is

strictly increasing in θ.

The supply and demand framework does not change. Given cutoffs (P 1, . . . , Pm) = P, student

s demandDs(P) is the college they prefer among those where they pass the cutoff. The demand

Di(P) at collegeCi is the mass of students who demandCi. The unique vector of market clearing

cutoffs is the solution of D(P) = α when

∑
i∈[m]

αi < 1. When

∑
i∈[m]

αi ≥ 1, the market clearing

cutoffs are given buDi(P) = αi for full colleges andDi(P) = Iij for colleges where empty seats

remain.

3.5.2 Results

Turning to our results, Proposition 3.5 remains true. That is, whenever two groups have the same

marginal at some college, they have the same probability of getting this college as a first choice.

On the other hand, Proposition 3.6 does not hold anymore: for any pair of colleges whose joint

capacity is less than 1, correlation between their rankings will have an effect on the matching, even

if the total capacity is more than 1. We can still derive a weaker version.

Proposition 3.12. If for all pair of colleges i, j ∈ [m] we have αi + αj ≥ 1, then correlation has
no effect on the stable matching. The cutoffs PA and PB are constant in θ, on then so are V Gj ,C

1
and V Gj ,C

2 for all j andC . Moreover, V Gj

∅ = 0, therefore ∀i, j ∈ [K],LGi,Gj (θ) = 0.

Proof. With this assumption, students get either their first or second choice, i.e., they cannot

get a worst choice or remain unassigned. From there, the reasoning used in the original proof

applies. ■

The other results all rely on Lemma 3.8. We found, through numerical experiments, that Lemma

3.8 generally does not extend beyond two colleges. See Figure 3.5 for a counterexample with four

colleges, one group, standard Gaussian marginals at every college, a Gaussian copula with the same

covariance θ at each pair of colleges, and α = (0.05, 0.05, 0.2, 0.5). The cutoff PC of the third

college is increasing for high values of θ.
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Fig. 3.5: Counterexample to the extension of Lemma 3.8 to more than two colleges: Four colleges, one

group, multivariate Gaussian distribution with variance 1 at each college and covariance θ on all

pairs of colleges, and α = (0.05, 0.05, 0.2, 0.5). Note that PC
is not monotone decreasing.

To understand more clearly the reason for Lemma 3.8 not being true with more than two colleges,

we can try to prove it the same way we did in the two colleges case. The details are provided in

Appendix 3.8.4. Every part of the proof works except for one point: with two colleges, terms of

the form P(WA ≥ PA,WB < PB) were decreasing in θ due to the coherence assumption, but

for instance with three colleges terms of the type P(W 1 ≥ P 1,W 2 < P 2,W 3 < P 3) are not

necessarily monotonic in θ even with the coherence assumption. To make the proof work we

could add the assumption that all quantities of the form presented above must be monotonic in

θ, but it would be an extremely restrictive assumption, as we do not know any classical copula

family that satisfies it.

Under some additional assumptions, those results could be recovered, however they are quite

restrictive too. For instance, if we assume that students preferences are drawn uniformly at random

and all colleges have the same capacity, as in Peng and Garg [PG23], then all cutoffs are equal (or at

least increasing functions of each other, if colleges use different marginals) and we recover Lemma

3.8 and all subsequent results.

3.6 Special Cases

In our model, the exact solutions of the market-clearing equation, and thus the metrics, usually

do not admit closed-form expressions. In this section, we focus on some notable special cases

for which these calculations are possible and allow us to have a quantitative view of the effects

of correlation. In particular, since Theorem 3.7 and 3.9 state that the metrics are monotonic,
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computing them for correlation levels of -1, 0 and 1 provides bounds for all correlation values in

between.

3.6.1 Excess of capacity

In the case where αA + αB ≥ 1, the market clearing equation no longer allows to compute

the stable matching. In fact, there might even exist several stable matchings. We can find one by

following the steps of the deferred acceptance algorithm (see Algorithm 7 in the Appendix). We

consider three (partitioning) cases:

(1) There is not enough room in collegeA for all students preferring it to collegeB, i.e.,
∑
j
γjβj ≥ αA.

In this case, there is necessarily enough room in college B for all students preferring it, since

αA + αB ≥ 1. Therefore, following the steps of DA, we find:

(i) At step one,

∑
j
γjβj students preferring A apply there and the best αA are temporarily

admitted, and

∑
j
γj(1 − βj) students preferring B apply there and are all temporarily

admitted.

(ii) At step two, the

∑
j
γjβj −αA students rejected fromA apply toB, and are admitted since

there is enough room for them (considering the students previously admitted).

This results in the following probabilities of a student to get their first or second choice:

V
Gj ,A

1 = 1− FAj (PA), V
Gj ,B

1 = 1,

V
Gj ,A

2 = FAj (PA), V
Gj ,B

2 = 0,

PA =

∑
j

γjβj
(
1− FAj

)−1

(αA).

Finally, as every student is admitted somewhere, V
Gj

∅ = 0.

(2) There is not enough room in collegeB for all students preferring it toA, i.e.,
∑
j
γj(1−βj) ≥ αB .

Symmetrically we get

V
Gj ,A

1 = 1, V
Gj ,B

1 = 1− FBj (PB),

V
Gj ,A

2 = 0, V
Gj ,B

2 = FBj (PB),

PB =

∑
j

γj(1− βj)
(
1− FBj

)−1

(αB), V
Gj

∅ = 0.
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(3) There is enough room in each college to admit all students who prefer attending it, i.e.,
∑
j
γjβj ≤

αA and
∑
j
γj(1 − βj) ≤ αB . It follows that everyone gets their first choice: for j ∈ [K] and

C ∈ {A,B},

V
Gj ,C

1 = 1,

V
Gj ,C

2 = V
Gj

∅ = 0.

3.6.2 One group

Suppose that there is only one group of students (i.e., γ1 = 1) and therefore all students have the

same correlation parameter θ. Since there is only one group, there is only one parameter β for the

proportion of students preferringA, and the metricsV1, V2 andV∅ do not depend on the group. In

this section we first treat the case of capacity excess in more detail using this additional assumption,

then we consider three specific cases, where the colleges have either full correlation (they use the

same ranking of students), no correlation at all (their rankings are statistically independent), or

anti-correlation (the ranking at one college is the prefect opposite of the other). These special

cases will allow us to understand the matching’s dependencies on the capacities and preferences

of students.

Excess of capacity

First, when αA + αB ≥ 1, we can directly apply the results found in the previous section. First,

as before we have V∅ = 0. Then,

• if β ≥ αA (college A is over-demanded):

V A
1 = αA

β
, V B

1 = 1,

V A
2 = 1− αA

β
, V B

2 = 0.

• if β ≤ 1− αB (college B is over-demanded):
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V A
1 = 1, V B

1 = αB

1− β ,

V A
2 = 0, V B

2 = 1− αB

1− β .

• if 1− αB ≤ β ≤ αA (both colleges are under-demanded):

V A
1 = 1, V B

1 = 1,

V A
2 = 0, V B

2 = 0.

For the three following cases (full correlation, full independence and anti-correlation) we assume

that αA + αB < 1.

Full correlation

We first study the case where students have the same rank in both colleges.

Proposition 3.13. When both colleges use the same ranking, the metrics V1, V2, V∅ can be computed
exactly, and their expressions are:

• if β ≤ αA

αA+αB (college A is under-demanded):

V A
1 = αA + αB, V B

1 = αB

1− β ,

V A
2 = 0, V B

2 = αA − β

1− βα
B,

V∅ = 1− αA − αB

• if β ≥ αA

αA+αB (college A is over-demanded):

V A
1 = αA

β
, V B

1 = αA + αB,

V A
2 = αB − 1− β

β
αA, V B

2 = 0,

V∅ = 1− αA − αB
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Proof sketch. The proof amounts to solving the market-clearing equation, the details are provided

in Appendix 3.8.3. ■

This result is illustrated by the blue and orange lines in Figure 3.6. For the top row, β = 0.3, and

V A
1 and V B

1 are computed for αA = αB := α varying from 0 to 1. The probability of getting

one’s first choice is increasing in the capacity. Students preferring collegeA get either their first

choice or nothing, as shown in Proposition 3.13. Indeed, collegeA is easier to get in than college

B since β ≤ αA

αA+αB , so a student rejected from collegeA is necessarily rejected from collegeB.

For α > 0.5, Proposition 3.13 does not apply anymore because there is capacity excess, and we

need to refer to Section 3.6.1. For the bottom row, αA = αB = 0.25 and V A
1 and V B

1 are shown

for β varying from 0 to 1. The two figures are mirrored images of each other, which is natural as

the problem is symmetric inA andB. Observe that students who prefer the least popular college

have a higher probability of getting their first choice (the blue line is higher on the left plot than

on the right for β < 0.5, and lower for β > 0.5).

Remark 3.5. The full correlation case does not fit our model’s assumptions, since the distribution

does not have full support. The consequence is that uniqueness of the stable matching is not

guaranteed. However, by solving the market clearing equation, we showed that there is indeed

only one solution, so the stable matching is still unique.

Full independence

Now, consider the case where the ranks of a student atA andB are not correlated at all.

Proposition 3.14. When colleges’ rankings are independent and αA + αB < 1, the metrics
V1, V2, V∅ can be computed exactly, and their expressions are:

V A
1 = 1− 1− β

2β (∆− ζ), V B
1 = 1− 1

2(∆ + ζ),

V A
2 = 1− β

2β (∆− ζ)− 1− β
4β (∆2 − ζ2), V B

2 = 1
2(∆ + ζ)− 1− β

4β (∆2 − ζ2),

V∅ = 1− αA − αB

with ζ = 1−2β
1−β + β

1−βα
A − αB and ∆ =

√
ζ2 + 4β

1−β (1− αA − αB).

Proof sketch. Again, the proof amounts to solving the market-clearing equation, the details are

provided in Appendix 3.8.3. ■
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These results are illustrated by the dashed green and red lines in Figure 3.6. For the top row, once

again, Proposition 3.14 applies only for α < 0.5. Note that V A
2 and V B

2 are both strictly positive,

because even though collegeA is easier to get in than collegeB, students rejected from collegeA

still have an independent second chance atB.
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Fig. 3.6: Proportion of students getting their first and second choice with one group, andαA = αB = α.

The solid blue and orange lines are for the full-correlation case, the dashed green and red ones for

the no-correlation case. As the blue and green lines represent the same metric in two different

settings, the gap between them is hashed to highlight the welfare increase when switching from

one to the other. The same applies to the orange and red lines, where the gap is dotted.

Comparing the blue and green lines, note that the amount of students getting their first choice

is always larger with full correlation. This follows from Theorem 3.7 as V1 is increasing in the

correlation, for any values of the parameters. Correspondingly, the amount of students getting

their second choice is always lower with full correlation. For values of θ for which the correlation

is between 0 and 1, it is generally not possible to obtain closed-form expressions for these metrics.

However, Theorem 3.7 implies that their graphs have to be contained between the two extreme

cases, i.e., in the colored area highlighted in Figure 3.6. These areas show the extent of the influence

of correlation on students’ welfare. It appears that for intermediate values of the problem’s

fundamentals, the gap is substantial. For instance, looking at the bottom row, we see that for

β = 0.5 and αA = αB = 0.25, increasing the correlation can make the number of students

getting their first choice grow from 30% to 50%.
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Anti-correlation

We study the case where the ranking of one college is the exact opposite of the other. Once again,

we can compute explicitly the metrics.

Proposition 3.15. When colleges’ rankings are opposed and αA + αB < 1, the metrics V1, V2, V∅

can be computed exactly, and their expressions are:

V A
1 = αA, V B

1 = αB,

V A
2 = αB, V B

2 = αA,

V∅ = 1− αA − αB

Proof. We assume WLOG that the marginals are uniform on [0, 1]. Then, since correlation is -1,

we have for every studentWA = 1−WB
. Then, the market clearing equation immediately gives

PA = 1−αA andPB = 1−αB , which givesV A
1 = V B

2 = αA andV B
1 = V DA = αB . ■

As in the full correlation case, the distribution of grades does not have full support, and therefore

the stable matching might not be unique, but by solving the market clearing equation we prove

that it in fact is.

Noisy priorities

We can use our results to study a model where the priorities are composed of each student’s latent

quality and some additive noise, as we presented in Section 1.2.3. This model is strictly more

complex than our base model, so it will not make the computation of solutions easier in the

general case. However, we can use the results obtained above to study the special case where the

noise has infinite variance. This case is actually equivalent to the case with no correlation that

we considered above, but the fact priorities are noisy gives rise to new interesting metrics, such

as the number of students having justified envy with respect to the true priorities (i.e., the latent

qualities), or the number who got a worse (or better) outcome because of the noise.

We start by computing the amount of students having justified envy. A student s has justified

envy if, in the matching obtained with noisy priorities, some student with a lower latent quality

was admitted to a college that swould have preferred to their current college.

First, notice that all students that get their first choice cannot have justified envy since they do

not envy anyone. Second, consider a student s who did not get their first choice, college C . If

some student with a lower latent quality than them is admitted toC , then s has justified envy.

However, in the continuum model, an infinity of students have a lower latent quality than s, and
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the probability that one of them is admitted to C is 1. Therefore, the number of student with

justified envy is the number of students who do not get their first choice 1− E.

Proposition 3.16. The amount of students with justified envy is:

• if αA + αB ≥ 1:

– 1− β − αB for β ≤ 1− αB ,

– 0 for 1− β ≤ β ≤ αA,

– β − αA for β ≥ αA.

• if αA + αB < 1: (1− β)∆,

where ∆ =
√
ζ2 + 4β

1−β (1− αA − αB) as before.

Proof. The amount of students with justified envy is 1−E = 1−βV A
1 −(1−β)V B

1 . From there,

we only have to input the expressions for V A
1 and V B found above (in the case with correlation

0, since infinite noise is equivalent to no correlation). ■

Those expressions are plotted on Figure 3.7. We can notice on the top row that when capacity is

low justified envy is not very sensible to students’ preferences, but it is much more sensible to it

when capacity increases. Bottom row confirms the natural intuition that when capacity increases,

justified envy decreases as more students can have their first choice independently of the noise.

We now turn to computing the amount of students benefiting or losing from the noise. We

consider that a student is losing (resp. benefiting) from the noise if they get a worse (resp. better)

outcome in the matching with noise than they would have gotten with the latent qualities. With

infinite noise, the outcome of a student are totally independent of their latent quality, which

makes the computation of the computation of the mass of students in each situation easier.

Proposition 3.17. WhenαA +αB < 1, there are always more students losing from the noise than
benefiting from it.

We explain below how to compute the two quantities, which provides an immediate proof for

the proposition. A student is losing from the noise if they get their second choice when they
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(a) Justified envy as a function of β, α = 0.25
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(b) Justified envy as a function of β, α = 0.75
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(c) Justified envy as a function of α, β = 0.2
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(d) Justified envy as a function of α, β = 0.5

Fig. 3.7: Proportion of students having justified envy with one group, infinite noise on the priorities,

and αA = αB = α. On the top row capacity is fixed and β varies, on the bottom row it is the

opposite.

should have gotten their first, or if they remain unassigned when they should have been admitted

somewhere. This quantity is then equal to

βV A
1 (1)V A

2 (0) + (1− β)V B
1 (1)V B

2 (0) + V∅(1− V∅),

where (0) or (1) as argument of the metrics refers to the value of those metrics with no correlation

of with full correlation respectively, and is omitted for V∅ since they are equal. Conversely, the

mass of students benefiting from the noise is

βV A
1 (0)V A

2 (1) + (1− β)V B
1 (0)V B

2 (1) + V∅(1− V∅).

If we subtract the second expression from the first, we get that

β
(
V A

1 (1)V A
2 (0)− V A

1 (0)V A
2 (1)

)
+ (1− β)

(
V B

1 (1)V B
2 (0)− V B

1 (0)V B
2 (1)

)
more students are losing from the noise than benefiting. Since V A

1 (1) ≥ V A
1 (0) and V A

2 (1) ≤
V A

2 (0), and same forB, this quantity is always positive. We can notice from the expression that

when αA + αB ≥ 1, both metrics are equal and thus the difference is zero, since V A
1 , V

B
1 , V A

2
and V B

2 are independent from correlation. While it was expected that making priorities random
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would help some students and hurt others, it is quite interesting and unexpected that it always

hurts more students than it helps.
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(a) Students losing and benefiting from the noise as a

function of β, α = 0.25
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(b) Students losing and benefiting from the noise as a

function of β, α = 0.75
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(c) Students losing and benefiting from the noise as a

function of α, β = 0.2
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(d) Students losing and benefiting from the noise as a

function of α, β = 0.5

Fig. 3.8: Proportion of students losing and benefiting from the noise with one group, infinite noise on

the priorities, andαA = αB = α. On the top row capacity is fixed and β varies, on the bottom

row it is the opposite. The hashed areas highlight the difference between the two metrics.

Figure 3.8 illustrates the amount of students losing and benefiting from the noise. We notice that,

as stated in Proposition 3.17, when αA + αB < 1 there are always more students losing from the

noise than there are benefiting from it. This difference is highlighted by the hashed areas. The

difference is largest when β = 1
2 . Here is an interpretation: when all students prefer the same

college, if noise hurts a student, it means that some other student gets their seat and benefits from

it, so the two metrics are equal. When students have different preferences, if noise hurts a student,

the student who gets their seat might also be losing from the noise, which explains that noise hurts

more students than it helps, and that this effect is maximized when β = 1
2 . As stated above, when

αA + αB ≥ 1, both metrics are equal.
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3.7 Discussion

We have introduced a tractable model to study the impact of differential correlation between

different groups and studied its effect on on outcome inequality and efficiency in matching

markets. Our framework is general in that it accommodates almost any grade distribution, any

number of groups with different distributions and different student preferences, and colleges of

any capacity.

However, a limitation is our focus on two colleges. We showed in Section 3.5 that Lemma 3.8

does not generally stand with more than two colleges. It follows that Theorem 3.7 also does

not extend beyond two colleges as it entirely relies on Lemma 3.8. The other results (Corollary

3.9, and Propositions 3.10 and 3.11) may remain true, but different proof techniques would be

required. Our experiments suggest that the statement of Lemma 3.8 may still be true for large

classes of correlation, thus suggesting the possibility to extend our results under some additional

assumptions.

To conclude, we believe that there is ample scope to study themes that have already been considered

in the single decision-maker settings in the matching context. Our analysis suggests that in

matching new phenomena arise and it is important to further understand them. In models where

decision-makers use noisy estimates of applicants’ latent quality, existing results about algorithmic

monoculture could be extended, providing a theoretical foundation to experimental results such

as those of Bommasani et al. [Bom+22]. Using the noise structure, interesting variations could

be allowing applicants to invest in accurate assessment, e.g., via acquiring certifications or doing

in-person interviews, or considering the effects of risk aversion. Other possible directions could

include making applications costly, or allowing applicants to not list all colleges in their preferences,

and a more thorough study of colleges’ utility.

3.8 Appendices

3.8.1 Notation

Table 3.1 provides a summary of the notation used throughout this chapter.

3.8.2 Definitions and technical details
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Tab. 3.1: Notation for Chapter 3

Agents:

A,B Colleges (generic: C)

s An arbitrary student

S Students set

G1, . . . GK Groups of students, partition of S
η Measure for student masses

Agents’ features:

αA, αB Colleges’ capacities (∈ (0, 1))

γj Mass of students in groupGj (∈ [0, 1])
βj Share of students in groupGj preferring collegeA (∈ [0, 1])

Priority scores:

WC
s Score atC of student s (generic: W )

fCj , F
C
j Marginal pdf and cdf of collegeC for groupGj

(Hθ)θ∈Θ , (hθ)θ∈Θ Copula family and associated pdfs, indexed by θ
θ Parameter for a copula family

fj,θj
, Fj,θj

GroupGj ’s score vectors’ joint pdf and cdf, Fj,θj
= Hθj

(FAj , FBj )
Θ Set of possible values for θ
ICj , Ij Support of fCj and fj,θj

respectively. Ij = IAj × IBj
ICj , Ī

C
j Lower and upper bounds of ICj

Correlation:

r Pearson’s correlation

ρ Spearman’s correlation

τ Kendall’s correlation

Matching:

µ Matching

V
Gj ,C

1 Share of students of group Gj and preferring C who get their first

choice

V
Gj ,C

2 Share of students of groupGj and preferringC who get their second

choice

V
Gj

∅ Share of students of groupGwho are unassigned

V1 Total mass of students getting their first choice

LGi,Gj (θ) Inequality betweenGi andGj , equal to |V Gi

∅ (θ)− V Gj

∅ (θ)|

Formal definition of the mass η

Here we formally define the notion of mass for a subset of students. This section is not necessary

to understand the results of the chapter; the notations introduced here are not used elsewhere.

We identify S to Σ := R2 × {G1, . . . , GK} × {A,B}. We partition Σ into several subsets:

ΣGj ,C := {s ∈ Σ : s = ((x, y), Gj , C), x, y ∈ R} is the subset of students belonging

to group G and preferring college C . Given a vector of parameters θ and priorities WA,WB

distributed according to fj,θj
forGj students, we say that a subset J ⊆ Σ is measurable if and
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only if {(WA
s ,W

B
s ) : s ∈ J} is Borel-measurable in R2

. We can partition J into subsets

JGj ,C := J ∩ ΣGj ,C . On each ΣGj ,C we define a measure ηGj ,C as follows: for J ⊆ Σ
measurable,

ηGj ,A(JGj ,A) = γjβjPθj
((WA,WB) ∈ {(WA

s ,W
B
s ) : s ∈ JGj ,A}),

ηGj ,B(JGj ,B) = γj(1− βj)Pθj
((WA,WB) ∈ {(WA

s ,W
B
s ) : s ∈ JGj ,B}),

(3.7)

Let B(S) be the set of measurable subsets of S. We define over B(S) the probability measure

η : B(S)→ [0, 1] such that for any measurable subset J of S,

η(J) =
∑
j∈[K]

ηGj ,A(JGj ,A) + ηGj ,B(JGj ,B). (3.8)

This definition is consistent with the definition of the parameters, as it verifies η(Gj) = γj ,

η({s ∈ Gj : A ≻s B}) = γjβj and so on.

Discussion on distributional assumptions

We assume that distributions admit a density and have full support, and that they can be repre-

sented using a copula family and marginals that remain the same for any θ, and that this copula

is coherent and differentiable. We here explain why these assumptions are not very restrictive by

presenting canonical examples of classical copulas satisfying our assumptions.

1. Gaussian copula: The Gaussian copula is obtained by composing the cdf Φθ of a bivariate

Gaussian with covariance matrix

(
1 θ

θ 1

)
and the univariate cdfϕ of the standard Gaussian:

Hθ(x, y) = Φθ(ϕ(x), ϕ(y)). Here, the parameter θ controls the covariance.

2. Archimedean copulas: Archimedean copulas are a broad family of copulas, each element

of this family being itself a parametric family of copulas with parameter θ. The general

formula is

Hθ(x, y) = ψ−1
θ (ψθ(x) + ψθ(y))

where ψθ : [0, 1]→ R+ is a continuous strictly decreasing and convex function such that

ψθ(1) = 0. Examples include:

• Clayton: Hθ(x, y) =
(
max{x−θ + y−θ − 1; 0}

)−1/θ

• Frank: Hθ(x, y) = −1
θ log

(
1 + (exp(−θx)−1)(exp(−θy)−1)

exp(−θ)−1

)

• Gumbel: Hθ(x, y) = exp
(
−((− log(x))θ + (− log(y))θ)1/θ

)
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The Gaussian copula, as well as Clayton’s, Frank’s, Gumbel’s and other Archimedean copulas, all

satisfy our coherence and differentiability assumptions.

The only assumption our model makes on the marginals is that they are continuous. This is not

particularly restrictive as long as there are no ties (see Section 3.4.2 for a treatment of ties).

Elements of correlation theory

In this section, we present common measures of correlation used in the literature, and some of

their properties.

Definition 3.5 (Common measures of correlation). Let (X,Y ) be two random variables with

respective cdfs FX , FY . Define:

1. Pearson’s correlation: assume X,Y have finite standard deviations σX and σY . Then

rX,Y = Cov(X,Y )
σXσY

.

2. Spearman’s correlation: let rkX = FX(X) and rkY = FY (Y ). We can think of rkX

as describing the ranking ofX inside a sample. Then Spearman’s correlation is ρX,Y =
rrkX ,rkY

.

3. Kendall’s correlation: let (X1, Y1) and (X2, Y2) be two independent pairs of random

variables with the same joint distribution as (X,Y ). Then Kendall’s correlation is

τX,Y = P [(X1 > X2 ∩ Y1 > Y2) ∪ (X1 < X2 ∩ Y1 < Y2)]−
P [(X1 > X2 ∩ Y1 < Y2) ∪ (X1 < X2 ∩ Y1 > Y2)] .

We use the same letter r for the covariance of the standard bivariate Gaussian and for Pearson’s

correlation as they are equal. Moreover, for this distribution simple expressions exist for the two

other correlation coefficients:

ρ = 6
π

arcsin(r/2), τ = 2
π

arcsin(r).

A correlation measure should be zero when variables are independent, and reach its maximum

when the variables are totally dependent on each other. The following lemma provides these

properties for the measures we just introduced.

Lemma 3.18 ([Sca84, Theorems 1, 4, and 5]). LetX,Y be two real random variables.
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1. rX,Y , ρX,Y , τX,Y ∈ [−1, 1].

2. ρX,Y = 1 if and only if Y = g(X) with g : R→ R increasing. The same holds for τX,Y .
rX,Y = 1 if and only if the relation is affine.

3. IfX and Y are independent, then rX,Y = ρX,Y = τX,Y = 0.

Complements on matching with a continuum of students

To define matching in a continuum context, we follow [AL16].

Definition 3.6. A matching is an assignment of students to colleges, described by a mapping

µ : S ∪ {A,B} → 2S ∪ C ∪ S, with the following properties:

1. for all s ∈ S, µ(s) ∈ {A,B} ∪ {s};

2. forC ∈ {A,B}, µ(C) ⊆ S is measurable and η(µ(C)) ≤ αC ;

3. C = µ(s) if and only if s ∈ µ(C);

4. forC ∈ {A,B}, the set {s ∈ S : µ(s) ⪯s C} is open.

The first three conditions are common to almost all definitions of matching in discrete or contin-

uous models. Condition (1) ensures that a student is either matched to a college or to themselves,

which means that they remain unmatched. Condition (2) ensures that colleges are assigned to a

subset of students that respects the capacity constraints. Condition (3) ensures that the matching

is consistent, i.e., if a student is matched to a college, then this college is also matched to the student.

Condition (4) was introduced by Azevedo and Leshno [AL16] and is necessary to ensure that

there do not exist several stable matchings that only differ by a set of students of measure 0.

To produce a stable matching, one can extend the classic deferred acceptance algorithm by [GS62]

to the continuum model. This algorithm is described in Algorithm 7.

If the algorithm stops, the matching it outputs is stable; [ACY15] show that even when the number

of steps is infinite, the algorithm converges to a stable matching.

Remark 3.6. Note that stable matchings do not only result from centralized algorithms but are

often the result of a decentralized process (see, e.g., [RV90]).
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Algorithm 7: Deferred acceptance algorithm for a continuum of students

First step: All students apply to their favorite college, they are temporarily accepted. If the

mass of students applying to collegeC is greater than its capacity αC , thenC only keeps the

αC best

while A positive mass of students are unmatched and have not yet been rejected from every college
do

Each student who has been rejected at the previous step proposes to her preferred college

among those which have not rejected them yet

Each collegeC keeps the best αC mass of students among those it had temporarily

accepted and those who just applied, and rejects the others

End: If the mass of students that are either matched or rejected from every college is 1, the

algorithm stops. However it could happen that it takes an infinite number of steps to converge.

3.8.3 Omitted proofs

Proof of Lemma 3.8.

Assume αA + αB < 1, and θ ∈ Θ̊K
. Let PA, PB ∈ R be the cutoffs of collegesA andB.

By definition of the quantities V1 and V2, the market-clearing equation (3.1) can be written as
∑

j∈[K]

(
γjβjV

Gj ,A
1 + γj(1− βj)V

Gj ,B
2

)
= αA,∑

j∈[K]

(
γjβjV

Gj ,A
2 + γj(1− βj)V

Gj ,B
1

)
= αB.

Then, using Lemma 3.3, we can rewrite it as
∑
j∈[K]

(
γjβjPj(WA ≥ PA) + γj(1− βj)Pj,θj

(WA ≥ PA,WB < PB)
)

= αA,∑
j∈[K]

(
γjβjPj,θj

(WA < PA,WB ≥ PB) + γj(1− βj)Pj(WB ≥ PB)
)

= αB,

which is finally equivalent to

∑
j∈[K]

(
γjβj

∫ ∞

PA
fAj (x) dx+ γj(1− βj)

∫ ∞

PA

∫ PB

−∞
fj,θj

(x, y) dxdy
)

= αA,

∑
j∈[K]

(
γjβj

∫ PA

−∞

∫ ∞

PB
fj,θj

(x, y) dxdy + γj(1− βj)
∫ ∞

PB
fBj (x) dx

)
= αB.

(3.9)

We fix θ, and we want to study how the solution (PA, PB) of the above equation varies as

a function of θj for some j ∈ [K]. Let us define Z : R2 × Θ → R2
, (PA, PB, θj) 7→
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(DA(PA, PB) − αA, DB(PA, PB) − αB). (We will denote by Z1 and Z2 its two compo-

nents.)(
Z1(PA, PB, θj)
Z2(PA, PB, θj)

)
=

∑
j∈[K]

(
γjβj

∫ ∞

PA
fAj (x) dx+ γj(1− βj)

∫ ∞

PA

∫ PB

−∞
fj,θj

(x, y) dxdy
)
− αA

∑
j∈[K]

(
γjβj

∫ PA

−∞

∫ ∞

PB
fj,θj

(x, y) dxdy + γj(1− βj)
∫ ∞

PB
fBj (x) dx

)
− αB

 (3.10)

Then for each θj ∈ Θ, (PA, PB) is the solution of the equation Z(PA, PB, θj) = (0, 0).

In order to show that PA and PB are decreasing in θj , we wish to apply the implicit function

theorem. Let PA, PB ∈ R and θj ∈ Θ such thatZ(PA, PB, θj) = 0. FunctionZ is of class

C1
. We first verify that the partial Jacobian JZ,(PA,PB)(PA, PB, θj) is invertible, where

JZ,(PA,PB)(PA, PB, θj) =

 ∂Z1
∂PA

∂Z1
∂PB

∂Z2
∂PA

∂Z2
∂PB

 . (3.11)

To show that the determinant
∂Z1
∂PA

∂Z2
∂PB − ∂Z1

∂PB
∂Z2
∂PA ̸= 0, we will show that it is in fact strictly

positive. From (3.9), it is clear thatZ1 is decreasing in PA and increasing in PB , and thatZ2 is

increasing in PA and decreasing in PB . Therefore, to prove that
∂Z1
∂PA

∂Z2
∂PB − ∂Z1

∂PB
∂Z2
∂PA > 0, we

only need to prove that

∣∣∣ ∂Z1
∂PA

∣∣∣ > ∂Z2
∂PA and

∣∣∣ ∂Z2
∂PB

∣∣∣ > ∂Z1
∂PB .

By symmetry, we will only prove the first one. We can compute each term separately:

∂Z1
∂PA

=
∑
j∈[K]

(
γjβj

∂ Pj(WA ≥ PA)
∂PA

+ γj(1− βj)
∂ Pj,θj

(WA ≥ PA,WB < PB)
∂PA

)
,

∂Z2
∂PA

=
∑
j∈[K]

γjβj
∂ Pj,θj

(WA < PA,WB ≥ PB)
∂PA

.

All terms ofZ1 are decreasing in PA and all terms ofZ2 are increasing in PA, therefore we can

proceed term by term:∣∣∣∣∣γjβj ∂ Pj(WA ≥ PA)
∂PA

∣∣∣∣∣ = γjβj
∂ Pj(WA < PA)

∂PA
,

= γjβj

(
∂ Pj,θj

(WA < PA,WB < PB)
∂PA

(3.12)

+
∂ Pj,θj

(WA < PA,WB ≥ PB)
∂PA

)
, (3.13)

> γjβj
∂ Pj,θj

(WA < PA,WB ≥ PB)
∂PA

.
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We conclude that

∣∣∣ ∂Z1
∂PA

∣∣∣ > ∂Z2
∂PA , and similarly

∣∣∣ ∂Z2
∂PB

∣∣∣ > ∂Z1
∂PB . Therefore the Jacobian in (3.11)

has positive determinant and is invertible.

By the implicit function theorem, there exists a neighborhoodU of (PA, PB), a neighborhood

V of θj , and a function ψ : V → U such that for all (x, y) ∈ R2
, θ ∈ Θ,

( (x, y, θ) ∈ U × V andZ(x, y, θ) = 0 )⇔ ( θ ∈ V and (x, y) = ψ(θ) ).

In particular, (PA, PB) = ψ(θj), and we can compute the derivative of ψ:

Jψ(θj) = −JZ,(PA,PB)(PA, PB, θj)−1 JZ,θj
(PA, PB, θj),

= −1
∂Z1
∂PA

∂Z2
∂PB − ∂Z1

∂PB
∂Z2
∂PA

 ∂Z2
∂PB

− ∂Z1
∂PB

− ∂Z2
∂PA

∂Z1
∂PA



∂Z1
∂θj
∂Z2
∂θj

 ,

= −1
∂Z1
∂PA

∂Z2
∂PB − ∂Z1

∂PB
∂Z2
∂PA


∂Z2
∂PB

∂Z1
∂θj
− ∂Z1
∂PB

∂Z2
∂θj

− ∂Z2
∂PA

∂Z1
∂θj

+ ∂Z1
∂PA

∂Z2
∂θj

 . (3.14)

We only need to know the sign of each term to conclude about the variations of ψ. We already

know the sign of the derivatives in PA and PB , so we only need those in θj . The terms of

Z1 that depend on θj are

∑
j∈[K]

γj(1 − βj)Pj,θj
(WA ≥ PA,WB < PB). By Lemma 3.1,

Pθj
(WA ≥ PA,WB < PB) is decreasing in θj , and thus

∂Z1
∂θj

< 0. By the same argument,

∂Z2
∂θj

is also negative. (Note that here the implicit functions theorem requires that we compute the

partial derivatives ofZ as if PA and PB were not functions of θj .)

If we replace each term of the last line of Equation (3.14) by its signs, we get

− 1
+

(
(−×−) − (+×−)
− (+×−) + (−×−)

)
=
(
−
−

)
.

We conclude that ψ and therefore PA and PB are decreasing in θj .

Note that we require θj ∈ Θ̊ because if one of the θj is maximal, i.e., the distribution is fully

correlated (WB
is a deterministic function ofWA

), then the V1 metrics are not differentiable at

this point. However, they are continuous, therefore they are increasing on the whole interval Θ.

Moreover, if the distribution is not fully correlated when θ is maximal, then we can replace Θ̊ by

Θ in the statement of the lemma. ■
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Fig. 3.9: Illustration of the distribution fθ with three priority classes atA (30% of applicants in the first

class, 30% in the second, 40% in the third), two priority classes atB (40% in the first class, 60%

in the second), and correlation θ = 0.5.

Proof of Proposition 3.11.

We start by building a distribution family that can represent both STB and MTB for two values

of the parameter. The priority classes are QA1 , . . . Q
A
nA

and QB1 , . . . Q
B
nB

, and we denote by

κCj = η(QCj ) the mass of students inside class j of college C . Let a0 = 0, a1 = κA1 , a2 =
κA1 + κA2 , . . . , anA = 1, such that they form a partition of [0, 1] with the j-th segment having

lengthκAj . Define b0, . . . , bnB similarly. Finally, for any i ≤ nA, j ≤ nB , letκi,j = η(QAi ×QBj )
be the mass of students belonging to class i forA and class j forB.

Let ϕθ be the pdf of the Gaussian copula with uniform marginals on [0, 1]2 and covariance θ. For

any θ ∈ [−1, 1], let fθ : [−1, 1]2 → R be defined as:

fθ(x, y) = κi,jϕθ(
x− ai−1
κAi

,
y − bj−1
κBj

) with ai−1 ≤ x ≤ ai, bj−1 ≤ y ≤ bj

Defined this way, fr is a pdf since it is non-negative and has integral 1. The marginals are uniform

and do not depend on θ. Moreover, the integral of fr over each rectangleQAi ×QBj is κi,j , and

each rectangle contains a “copy” of the Gaussian copula adjusted to its dimensions. There is no

“spill” between classes: if student s is in a higher priority class at collegeC than student s′
, then s

will have a higher score with probability 1. If for all i, j, κi,j > 0, and θ /∈ {−1, 1}, then fθ has

full support. This distribution is depicted in Figure 3.9.
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We can verify that this definition recovers MTB and STB: if θ = 0, if two students are in the same

priority class for a college, they have the same ex-ante probability of getting a seat there, and if

they also are in the same priority class for the other college (i.e., they are in the same rectangle

QAi ×QBj ), the result of this second tie-breaking is independent from the first one. When θ = 1,

if two students are in the same priority class for a college, have the same ex-ante probability of

getting a seat there, but if they also are in the same priority class for the other college (i.e., they are

in the same rectangleQAi ×QBj ), the winner of the tie-breaking is the same as for the first college

since scores inside the rectangle are perfectly correlated. In that case, the distribution does not

have full support but this is not an issue as explained in Remark 3.2. Therefore MTB is the case

θ = 0 and STB θ = 1.

Let us now prove the proposition:

1. • The family (fθ)θ∈[−1,1] is differentiable by differentiability of the Gaussian copula.

It is also coherent (except for the (x, y) such that x = ai or y = bj , i.e., on the sides

of rectangles, in which case the cdf is constant and not increasing). Therefore by

applying Theorem 3.7,E is either increasing or constant.

• Moreover, the case where it could be constant can only happen if there are several

priority classes, so if there is only one it is strictly increasing.

• Let us look into the multiple priority classes case.Suppose that ∃θ ∈ Θ such that

PA(θ) ̸= ai and PB(θ) ̸= bj for all i, j. We can then apply Theorem 3.7, and

deduce thatV A
1 andV B

1 are increasing in all θj . If there exists no such θ, it implies that

PA, PB are constant in θ and so are V A
1 and V B

1 . However, as any perturbation of

either γ, βorαwould change the cutoffs, and resolve the issue, the set of problematic

values of (γ, β, α) has Lebesgue measure 0.

2. Finally, Corollary 3.9 can be applied with the same adjustments, which gives the fourth

point.

Proof of Proposition 3.13

For this proof, to simplify computations, assume without loss of generality that marginals follow a

uniform distribution on [0, 1]. Since the Deferred Acceptance algorithm only depends on ordinal

comparisons, this assumption is indeed not restrictive and switching to a uniform distribution

will greatly help solving the market-clearing equation 3.9. The students’ score vectors are therefore
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uniformly distributed along the diagonal of the square [0, 1]2. The cutoffsPA andPB belong to

[0, 1], and the metrics are given by:

V A
1 = 1− PA, V B

1 = 1− PB,
V A

2 = max(PA − PB, 0), V B
2 = max(PB − PA, 0),

V∅ = min(PA, PB).
(3.15)

Therefore, the market-clearing equation is

{
β(1− PA) + (1− β) max(PB − PA, 0) = αA,

βmax(PA − PB, 0) + (1− β)(1− PB) = αB.

Assume that PB ≥ PA. Then we have{
β(1− PA) + (1− β)(PB − PA) = αA,

(1− β)(1− PB) = αB,
(3.16)

which is equivalent to {
PA = 1− αA − αB,
PB = 1− αB

1−β .

Moreover, the assumption PB ≥ PA implies that β ≤ αA

αA+αB . PA and PB are well-defined,

that is, they are in [0, 1]. For PA, this follows from the assumption αA + αB < 1, and for PB it

is implied by the relation β ≤ αA

αA+αB . If PA ≥ PB instead, we have:

{
PA = 1− αA

β ,

PB = 1− αA − αB.
(3.17)

Similarly, this implies that β ≥ αA

αA+αB , and using this we can verify that PA, PB ∈ [0, 1].

We can then conclude that if β ≤ αA

αA+αB , then

V A
1 = αA + αB, V B

1 = αB

1−β ,

V A
2 = 0, V B

2 = αA − β
1−βα

B,

V∅ = 1− αA − αB;

and if β ≥ αA

αA+αB , then

V A
1 = αA

β , V B
1 = αA + αB,

V A
2 = αB − 1−β

β αA, V B
2 = 0,

V∅ = 1− αA − αB.

This is obtained by replacing in (3.15) the values of PA and PB found in (3.16) and (3.17). ■
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Proof of Proposition 3.14

As in the proof of Proposition 3.13, we assume without loss of generality for this proof that the

marginals are uniform over [0, 1]. Then the grades at collegesA andB are independent random

variables with a uniform distribution over [0, 1]. Students’ score vectors are thus uniformly

distributed on the whole area of the square [0, 1]2. Therefore the metrics as functions of PA and

PB are:

V A
1 = 1− PA, V B

1 = 1− PB,
V A

2 = PA(1− PB), V B
2 = PB(1− PA),

V∅ = PAPB.

(3.18)

The market-clearing equation is:

{
β(1− PA) + (1− β)PB(1− PA) = αA,

βPA(1− PB) + (1− β)(1− PB) = αB,

⇔
{
PB = 1− αB − β

1−β (1− PA − αA),
PAPB = 1− αA − αB,

⇔

 PB = 1− αB − β
1−β (1− PA − αA),

β
1−β (PA)2 + (1−2β

1−β + β
1−βα

A − αB)PA − (1− αA − αB) = 0.

(3.19)

Let ζ = 1−2β
1−β + β

1−βα
A−αB and ∆ =

√
ζ2 + 4β

1−β (1− αA − αB). From (3.19) and the fact

that PA ≥ 0 we deduce that {
PA = 1−β

2β (∆− ζ),
PB = 1

2(∆ + ζ).

Injecting this in Equation (3.18) finally gives

V A
1 = 1− 1−β

2β (∆− ζ), V B
1 = 1− 1

2(∆ + ζ),
V A

2 = 1−β
2β (∆− ζ)− 1−β

4β (∆2 − ζ2), V B
2 = 1

2(∆ + ζ)− 1−β
4β (∆2 − ζ2),

V∅ = 1−β
4β (∆2 − ζ2),

which concludes the proof of the proposition. ■
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3.8.4 Extension to more than two colleges: proof attempt

In this section we try to prove Lemma 3.8 for more than two colleges, using the model introduced

in Section 3.5. The market-clearing equation (3.1) can be written as



∑
j∈[K]

γj
m∑
i=1

∑
σ∈Σ([m])
σ(i)=1

βσGj
Pθj

( ⋂
n<i

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)
)

= α1

.

.

.∑
j∈[K]

γj
m∑
i=1

∑
σ∈Σ([m])
σ(i)=m

βσGj
Pθj

( ⋂
n<i

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)
)

= αm.

(3.20)

We fix all θi except for θj for some j, and we want to study how the solution P(θ) of the above

equation varies as a function of θj . Let us defineT : Rm×Θ→ Rm, (P, θj) 7→ (DC1(P(θ))−
α1, . . . , DCm(P(θ))−αm). We will denote byT 1, . . . , Tm the components ofT . Then for any

θj ∈ Θ, the solution P of Equation (3.20) is also the solution of the equation T (P, θj) = 0Rm .

In order to show that P 1, . . . , Pm are all decreasing in θj , we wish to apply the implicit function

theorem. Let P ∈ Rm and θj ∈ Θ such that T (P, θ1) = 0. Function T is of class C1
because

(Hθ)θ∈Θ is differentiable. We first verify that the partial JacobianJT,P(P, θj) is invertible, where

JT,P(P, θj) =


∂T 1

∂P 1 . . . ∂T 1

∂Pm

.

.

.

.

.

.

∂Tm

∂P 1 . . . ∂Tm

∂Pm

 . (3.21)

To prove this, we will show that no linear combination of the rows of JT,P(P, θj) can be equal to

zero. We start by proving the following inequality:

∀i ∈ {1, . . . ,m},
∑

k∈{1,...,m}

∂T k

∂P i
< 0 (3.22)

We start by noticing that for any i ̸= k,
∂T i

∂P i < 0 and
∂Tk

∂P i > 0. This is due to T k being a sum of

probabilities of intersections containing terms of the typeW ℓ < Pℓ for all ℓ ̸= k, andW k ≥ P k.

Therefore,T k is decreasing inP i and increasing in all the other cutoffsP ℓ. So proving the relation

(3.22) amounts to proving that− ∂T i

∂P i >
∑
k ̸=i

∂Tk

∂P i . The first term can be written:

−∂T
i

∂P i
=−

∑
ℓ∈[K]

γℓ

m∑
k=1

∑
σ∈Σ([m])
σ(k)=i

βσℓ

∂Pθℓ

( ⋂
n<k

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)
)

∂P i
.

(3.23)
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Notice that

Pθℓ

⋂
n<k

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)


=Pθℓ

⋂
n<k

(W σ(n) < P σ(n))

− Pθℓ

⋂
n≤k

(W σ(n) < P σ(n))


where the first term is constant in P i = P σ(k)

. We then deduce that

∂Pθℓ

( ⋂
n<k

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)
)

∂P i

=−
∂Pθℓ

( ⋂
n≤k

(W σ(n) < P σ(n))
)

∂P i
.

Injecting this relation in (3.23) gives:

−∂T
i

∂P i
=
∑
ℓ∈[K]

γℓ

m∑
k=1

∑
σ∈Σ([m])
σ(k)=i

βσℓ

∂Pθℓ

( ⋂
n≤k

(W σ(n) < P σ(n))
)

∂P i
. (3.24)

Now consider the terms in T k for k ̸= i:

∂T k

∂P i
=
∑
ℓ∈[K]

γℓ

m∑
k=1

∑
σ∈Σ([m])
σ(k)=Ck

σ−1(Ci)<k

βσℓ

∂Pθℓ

( ⋂
n<k

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)
)

∂P i
.

We now want to prove that

∑
k ̸=i

∂Tk

∂P i < − ∂T i

∂P i . We can do so by comparing them term by term.

Let σ ∈ Σ([m]), and consider the terms in each side of the inequality that have βσℓ as a factor

for some ℓ. On the right side, it gives

∑
ℓ∈[K]

βσℓ

∂Pθℓ

( ⋂
n≤k

(W σ(n) < P σ(n))
)

∂P i
.

On the left side, this term exists only for the ks such that σ−1(i) < σ−1(k):

∑
ℓ∈[K]

βσℓ
∑

{k:σ−1(i)<σ−1(k)}

∂Pθℓ

( ⋂
n<k

(W σ(n) < P σ(n)) ∩W σ(i) ≥ P σ(i)
)

∂P i
. (3.25)
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Fix a group ℓ and consider the last term of the sum in (3.25)

∂Pθℓ

( ⋂
n<m

(W σ(n) < P σ(n)) ∩W σ(m) ≥ P σ(m)
)

∂P i

that can be upper-bounded by

∂Pθℓ

( ⋂
n<m

(W σ(n) < P σ(n))
)

∂P i
.

The penultimate term being

∂Pθℓ

( ⋂
n<m−1

(W σ(n) < P σ(n)) ∩W σ(m−1) ≥ P σ(m−1)
)

∂P i
,

we can add those two to obtain

∂Pθℓ

( ⋂
n<m−1

(W σ(n) < P σ(n))
)

∂P i
.

and so on, we can continue packing the terms together, and we finally obtain

∑
{k:σ−1(i)<σ−1(k)}

∂Pθℓ
(W σ(1) < P σ(1) ∩ · · · ∩W i < P i ∩ · · · ∩W k ≥ P k)

∂P i

<
∂Pθℓ

(W σ(1) < P σ(1) ∩ · · · ∩W i < P i)
∂P i

which is the term associated to βσℓ in − ∂T i

∂P i (cf. Equation (3.24)). We finally conclude that

∀i ∈ {1, . . . ,m},
∑

k∈{1,...,m}

∂Tk

∂P i < 0.

We can now use this result to prove that JT,P(P, θj) is invertible. Let us callRi := ( ∂T i

∂Pk )k the

i-th row of JT,P(P, θj). Assume that there exists λ1, . . . , λm such that

∑
λiRi = 0Rm . Let

i0 ∈ arg max
i
λi. Then on the i0-th component we have

∑
i

λi
∂T i

∂P i0
≤ λi0

∑
i

∂T i

∂P i0

< 0

which contradicts

∑
λiRi = 0Rm . We conclude that no linear combination of the rows of

JT,P(P, θj) can be zero, therefore it is invertible.
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The assumptions of the implicit function theorem are verified, therefore there exists a neighbor-

hood U ⊆ Rm × Θ of (P, θj), a neighborhood V ⊆ Θ of θj , and a function ψ : V → Rm

such that for all (x, θ) ∈ Rm ×Θ,

( (x, θ) ∈ U and T (x, θ) = 0 )⇔ ( θ ∈ V and x = ψ(θ) ).

In particular, P(θ) = ψ(θj), and we can compute the derivative of ψ:

Jψ(θ1) = −JT,P(P, θ1)−1 JT,θ1(P, θ1),

= −1
|JT,P(P, θ1)|C

T


∂T 1

∂θj

.

.

.

∂Tm

∂θj

 ,
(3.26)

whereC is the comatrix ofJT,P(P, θ1). We want to show thatψ is decreasing in all its components,

i.e., all P i are decreasing in θj . However, the
∂T i

∂θj
do not have constant sign as they did in the two

college case, therefore we cannot conclude about the variations of ψ. While this is not a proof

that the Lemma is flase, the counter example provided in Section 3.5 is. By using the calculations

above, we might find particular values of the parameters for which the Lemma is true, but we

would need to compute explicitly the expression above, that in most cases cannot be expressed in

terms of usual functions.
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Conclusion

Global discussion

In this thesis, I studied two classical and very generic matching models, without and with prefer-

ences. In both models I discovered explicit relations between the structure of the input (respectively,

the shape of the graph and the correlation of preferences) and the (group) fairness of the matchings

that are commonly chosen as solution concepts (respectively, maximum matchings and stable

matchings).

The main conclusion that can be drawn from those results is that inequalities between groups

will almost always arise if the central authority choosing the matching does not pay attention to

them, as the common solution concepts do not include fairness constraints and very often lead

to the selection of an unfair matching. The attention of the authority to group fairness is made

even more important by the fact that inequalities arise even when all agents individually treat all

groups fairly, only because of the global structure of the problem (that could be interpreted as a

lack of coordination). Inequalities are then unintentional and agents either are oblivious to them,

or notice them but have no way to understand their origin without looking at the problem in its

entirety. In many cases of centralized matching, only the central authority has access to enough

information to detect the sources of unfairness highlighted in this thesis and potentially mitigate

them.

On the positive side, I showed that in many cases fairness can be achieved without any decrease

in efficiency. Even when that is not the case, my results indicate that fairness and efficiency are

not orthogonal and in many cases both can be improved simultaneously. In bipartite matching

without preferences, there always exists a matching that is both maximum and fair when there

are two groups, which is the case in many applications. When there are more groups, the price of

fairness is bounded, and when the graph is drawn randomly it is very close to 1, a setting closer

to real applications than the very specific cases where the PoF reaches the bound. In two sided

matching, I showed that the main factor acting on both fairness and efficiency is the correlation

of priorities. While it seems complex to impose an arbitrary degree of correlation between colleges

rankings, a simple solution to theoretically achieve both fairness and maximal efficiency is to have

a common exam, or standardized test, or to use a single tie-breaker when there are ties, ensuring a
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correlation of 1 for all groups. The fairness in this setting is theoretical because it implies that the

exam or test is itself fair, in the sense that the grade distribution for each group is the same and all

groups have equal access and preparation to it, which is a very strong assumption.

Regarding two-sided matching, we considered the most common solution concept, i.e., stability.

However, there exist other mechanisms that Deferred Acceptance, such as Top Trading Cycles

(TTC) or Random Serial Dictatorship (RSD), that output a matching that is not necessarily stable

but that are more efficient than DA. RSD is equivalent to running student proposing DA with a

common ranking for all colleges that is drawn randomly (equivalent to a single tie breaker with

only one priority class), and therefore ensures maximal efficiency and perfect fairness, however

it is very likely to feature justified envy. On the other hand, TTC outputs a matching that is

Pareto efficient (there is no matching that is preferred by all students), which is not the case of

DA, and is the Pareto-efficient mechanism that minimizes the number of blocking pairs, offering

a compromise between RSD and DA. Two questions then arise. First, it would be interesting

to perform on TTC the same analysis that I performed on DA in this thesis, in order to study

its group-fairness properties and compare it to DA. Secondly, since RSD is efficient and fair,

and much simpler than DA, choosing DA over it is a strong choice as it implies sacrificing some

efficiency and fairness for stability.

Perspectives

To improve the understanding of group fairness issues in matching many avenues lie before us.

The most direct ones were already discussed in the discussion section of each chapter, here I

present some more general directions.

• The fairness literature has not yet explored in much detail intersectional fairness, i.e., the

fact that a person might belong to several protected groups. Molina and Loiseau [ML22]

showed that ensuring fairness towards each group is not sufficient to ensure fairness towards

each intersection of groups (e.g., being fair between men and women, and between rich

and poor people, does not ensure that poor women are treated fairly). A way to circumvent

this problem is to consider each intersection of groups as a separate group. However, for

bipartite matching, the bounds on the price of fairness increase with the number of groups,

so the price of fairness could become very large with this approach. Using the particular

structure of intersectional fairness could lead to better bounds that those obtained for

disjoint groups.

• As mentioned above, TTC is a popular mechanism for two-sided matching that would

be worth studying as we did with DA. It even has a cutoff characterization as shown by

Leshno and Lo [LL20]. However, my analysis does not directly extend, because even with

only two colleges the coherence assumption is not sufficient to know how the cutoffs vary

with correlation. This is due to the fact that the cutoff structure is different: to get their
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first choice, students only need to pass the cutoff at some school, not necessarily at their

preferred one. Conversely, they get their second choice (say collegeB) if they are below both

those cutoffs but above a secondary cutoff atB. The variations in θ of the corresponding

masses of students cannot be derived from the coherence assumption alone as I did for

stable matchings. Studying the effect of correlation on TTC will then require additional

work.

• Both models (with and without preferences) could be made online, by having agents/students

arrive one by one, or by batches. The decision-maker would then need to decide whether

to match them and to whom. Without preferences, the objective would be both to match

as many agents as possible (see for instance [BE98]), while keeping the matching fair. In on

line algorithms, an algorithm is evaluated by its competitive ratio, i.e., the ratio between its

performance and the performance of the best offline algorithm on the same instance. For

matching, classically we compare the size of the matching found by the online algorithm to

the size of maximum matchings on the whole revealed graph. Similarly, we could compare

the size of the fair matching found by the online algorithm to the largest fair matching

in the whole graph as we now know how to find it. In two-sided matching, the objective

classically is to minimize the number of blocking pairs. We could extend our study to

existing algorithms to determine if correlation of priorities still plays a role, and if matchings

found by online algorithms are more or less unfair than those found offline with DA.

Closing reflection

Matching theory and algorithms are widely used in applications that have a huge impact on

people’s lives, such as school choice, college admission, refugee resettlement, and many others.

The questions regarding their fairness and efficiency properties are therefore highly sensitive, and

impact society as a whole beyond the scientific communities that usually study them as abstract

objects. We saw that choosing a matching in the set of all those that are feasible is a non trivial

choice, that implies to make judgments about values: we can prioritize group fairness, efficiency,

stability, or other objectives, but not all of them at once, at least not always. For each of those

choices, the role of mathematicians, computer scientists and economists is to provide the best

possible understanding of their consequences, and algorithms or mechanisms that give the best

solution according to each choice. However, making the choice in the first place of the values to

prioritize involves society as a whole.

The most prevalent cause of inequalities in matching problems stems from the input itself, i.e., the

graph in bipartite matching or the marginal distributions in two-sided matching. If some groups

have very few nodes connected to them, or marginal distribution of grades worse than the other

groups, they will always be disadvantaged and the levers that act on inequalities presented in this

thesis can only slightly mitigate that. Preventing such situations requires the attention of central

authorities as well as transparency in the way edges of the graph are built or grades are given.
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Another question that has to be answered before talking about group fairness, in any instance,

is to define the groups. Which subsets of the population need to be treated equally, and which

do not? What are the relevant attributes to define groups? Those questions requires once again

societal choices to be made, enlightened by scientific work from other fields such as sociology and

applied economics.

Regarding two-sided matching, we can also question the necessity of ranking people. While

expressing preferences towards objects, services or education programs seems quite natural and

necessary to each person’s well being, the effects of institutions ranking people, sometimes with

important consequences on their lives, are less obviously positive. First, most rankings are based

on some notion of merit, that is a very ill-defined concept that is context dependent (a person can

have some merit as a mathematician but much less as a football player) and cannot be directly

observed. As stated by Hume [Hum40], "the external performance has no merit. We must look

within to find the moral quality. This we cannot do directly; and therefore fix our attention on

actions, as on external signs". We measure merit based on performance in some task, but the

performance can be affected by many outside factors. The Stanford Encyclopedia of Philosophy,

in its entry about meritocracy [Mul23], gives the following example: "suppose that Daryl and

John are applying for jobs at the widget factory. Daryl is more skilled than John, works faster, is

more careful, more collegial, and so on. But this factory is filled with racists and Daryl belongs

to the disfavored race. As a result, Daryl would perform worse (make fewer widgets per hour)

than John would. Observe that, conceptually, Daryl remains more meritorious than John even

though hiring John would generate better outcomes". Further, we must consider the impact of

ranking on people and society, in if merit was well defined. By Goodhart’s law, "when a measure

becomes a target, it ceases to be a good measure", meaning that agents will do anything they can

to improve their value according to the chosen metric, and thus the metric will no longer measure

what it was intended to. Moreover, the strategies employed by the agents to improve their value

might have adversarial effects on society. For instance, "if a government sets a target for reducing

crime rates, police officers may be incentivized to focus on low-level offenses instead of tackling

more serious crimes"
9
. Finally, having competitions at every level of society, school choice, college

admission, job market, and many others, is not the only possible social organization. When the

term meritocracy emerged in the 1950’s, in writings by Young, Floud, Fox or Lamartine, it had

a very negative connotation, even though it is now used by many political figures as a positive

value. As Meurice [Meu23] stated, "what is a winner, if not a creator of losers? What meaning

can there be in enjoying someone else’s failure as a sign of our own power?[...] It is this structure

that legitimates all iniquities.", highlighting the link between competition and unfairness. In the

same spirit, for Jacquard, "the current collective morality makes us believe that what is important

is dominating others, struggling, winning. We are in a society of competition. But a winner is a

producer of losers. We need to rebuild a human society where competition will be eliminated".

9

Example taken from Dinker Charak’s blog: https://www.dinker.in/goodharts-law-when-a-
measure-becomes-a-target-it-ceases-to-be-a-good-measure/
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Et là normalement il faut une citation latine mais pff... J’en ai
marre!

François Rollin

Parce que si on commence à pendre les gens qui gagnent leur vie
en racontant des conneries, il est possible que je ne termine pas la
semaine.
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Résumé long de la thèse en
français

Introduction

De nombreuses situations d’allocation de ressources peuvent être représentées comme des prob-

lèmes d’appariement, un modèle théorique basé sur la théorie des graphes et utilisé dans les do-

maines de la recherche opérationnelle, de l’informatique et de l’économie. L’objectif des problèmes

d’appariement est de trouver un "bon" appariement, par exemple trouver le plus grand appariement

possible. Les inégalités entre groupes démographiques sont présentes dans tous les domaines de

la vie publique, par exemple à l’embauche. Les problèmes d’appariement sont particulièrement

concernés, d’autant plus qu’ils sont liés à des sujets sensibles comme les admissions à l’université

ou l’accueil et la répartition de réfugiés [Ref23]. Dans cette thèse, j’étudie la question de l’équité

dans les problèmes d’appariement et le potentiel compromis entre efficacité et équité. Ce premier

chapitre introduit introduit les fondements de la théorie de l’appariement, et discute des différentes

notions d’équité existantes dans la littérature.

Étant donné un graphe, un appariement est un ensemble d’arêtes qui ne partagent aucun sommet.

En particulier, dans un graphe biparti, il s’agit de faire des paires entre éléments situés de part et

d’autre du graphe. UN graphe de taille maximum peut être trouvé en temps polynomial grâce à

de nombreux algorithmes [FF56; HK73; Kar73]. Quand les sommets du graphe sont de agents

avec des préférences sur les partenaires potentiels, on recherche souvent des appariements stables.

Un appariement est stable si il ne peut pas être agrandi et si aucune paire d’agents non appariés

ne se préfèrent l’un l’autre à leurs partenaires actuels. Ce modèle peut également s’étendre pour

modéliser un problème d’admission à l’université où les universités peuvent admettre plusieurs

étudiants, dans la limite d’une capacité fixée. Un appariement stable peut là encore être trouvé en

temps polynomial grâce à l’algorithme de Gale et Shapley [GS62].

L’équité peut être définie de nombreuse manière. Dans la littérature, on peut distinguer deux

grandes catégories de notions d’équité: l’équité individuelle et l’équité de groupe. L’équité individu-

elle est le principe selon lequel des individus similaires devraient obtenir des résultats similaires

(dans un processus de notation ou d’appariement. Cette définition est assez vague et nécessite
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de définir la similarité entre les individus et entre les résultats possibles, et dans la majorité des

applications de prévient pas les discriminations envers certains groupes de la population. C’est

là qu’intervient la deuxième catégorie, l’équité de groupe. Il s’agit cette fois de s’assurer que les

groupes de la population (qui doivent être définis au préalable) soient traités de la même manière,

par exemple, en imposant à une entreprise d’embaucher autant d’hommes que de femmes. L’équité

de groupe ne prend pas en compte les individus, seulement des statistiques de groupe.

Appariement sans préférences: Matroïdes et prix
de l’équité

On considère un graphe bipartiG = (U, V,E), où les sommets de V sont divisés enK groupes:

V =
⋃
i∈[K]Gi, Gi ∩ Gj = ∅. On noteM(G) l’ensemble des appariements possibles sur le

graphe G. On introduit une représentation géométrique de cet ensemble des appariements au

travers de la fonction X : M → RK , µ 7→= (X1(µ), X2(µ), ..., XK(µ)), où Xi(µ) :=∑
u∈U

∑
v∈Gi

µ(u, v), qui compte le nombre d’agents appariés dans chaque groupe. On montre

que X(M(G)) est un polymatroïde discret, ce qui implique que l’ensemble des appariements

maximaux correspond au front de Pareto du polymatroïde, donnant une caractérisation précise

des appariements maximaux.

Nous introduisons une classe de contraintes d’équité de groupe qui inclut de nombreuses con-

traintes classiques de la littérature, que nous appelons équité pondérée. Étant donné un vecteur

de poids (w1, . . . , wK), un appariement µ estw-équitable si lesX(µ)i/wi sont égaux pour tout

i ∈ [K]. Pour un w fixé, la question est alors de savoir s’il existe un appariement qui soit à la

fois maximum etw-équitable, et si ce n’est pas le cas, quel est la taille du plus grand appariement

x-équitable comparé au plus grand appariement sans contrainte. Le ratio entre ces deux grandeurs

est ce que nous appelons le prix de l’équité (PoF pour Price of Fairness). Nous nous concentrons

sur une contrainte particulière appelée équité d’opportunité, et cherchons à majorer le prix de

l’équité. Nous obtenons des bornes qui sont linéaires en K , en particulier, le PoF est toujours

inférieur àK − 1, et donc avec deux groupes il est toujours égal à 1, ce qui implique qu’il existe

toujours un appariement maximal qui est équitable. Pour aller plus loin, nous étudions également

des graphes aléatoires et montrons que le PoF est proche de 1, ce qui montre que les situations

ou il est élevé correspondent à des cas très particuliers et dans des applications concrètes où les

graphes sont assimilables à des graphes aléatoires le prix de l’équité est faible.
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Appariement avec préférences: le rôle de la
corrélation des priorités

Dans ce chapitre, on étudie le modèle d’admission à l’université, c’est à dire un problème d’appariement

entre des étudiants et des universités où chaque étudiant à un ordre de préférence pour les univer-

sités et chaque université a un classement des étudiants. On considère un modèle simplifié avec

deux universitésA etB et un continuum d’étudiants S. L’ensemble des étudiants est divisé enK

groupesG1, . . . , GK comme dans le chapitre précédent. On s’intéresse à la corrélation entre les

deux classements des étudiants produits par les universitésA etB: chaque étudiant a une note

attribuée par chaque université,WA
etWB

, et au sein de chaque groupe, les vecteurs (WA,WB)
ont une distribution potentiellement différente. On extrait de chacune de ces distributions sa

copule (la distribution obtenue en transformant les marginales en distributions uniformes sur

[0, 1]), et on suppose qu’il existe un famille de copule (Hθ)θ∈Θ telle que pour chaque groupeGi il

existe θi tel que la distribution des notes deGi estHθi
. Si cette famille vérifie une hypothèse qu’on

appelle cohérence, alors les θi représentent la corrélation de la distribution pour chaque groupe,

et on peut étudier l’effet d’avoir différents niveaux de corrélation sur la qualité de l’appariement

stable et sur les potentielles inégalités entre les groupes.

De nombreux résultats sont obtenus dans cette direction. Tout d’abord, on remarque que la

proportion d’étudiants obtenant leur premier voeu est la même dans tous les groupes. En revanche,

la proporiton d’étudiants qui ne sont admis dans aucune université est plus importante dans les

groupes qui ont une corrélation élevée. De plus, augmeter la corrélation pour un seul groupe a

pour effet d’augmenter la proportion d’étudiants ayant leur premier voeu dans tous les groupes.

Dans le même temps, si on considère deux groupes dont les proportions d’étudiants admis nulle

part sont différentes, cette inégalité s’accroit si on augmente la corrélation du groupe désaventagé

ou si on réduit celle du groupe avantagé; et réciproqument, l’inégalité se réduit en diminuant la

corrélation du groupe désavantagé ou en augmentant celle du groupe avantagé.

Ces résultats peuvent également être appliqué au problème du bris d’égalité, c’est à dire quand

les critères de sélection conduisent à de nombreuses égalités dans le classement qui doivent être

tranchées aléatoirement. Il existe deux manières classiques de faire: soit chaque université classe

aléatoirement les étudiants ex-aequo jusu’à obtenir un calssement sans égalités, ou alors un class-

ment aléatoire des étudiants est crée par une autorité centrale et toutes les universités utilisent ce

même classement pour trancher les égalités. Il a été montré par le passé qu’utiliser un classement

commun pour trancher les égalités conduit à un nombre d’étudiants obtenant leur premier voeu

plus élevé que les classements multiples. Notre modèle permet de retrouver ce résultat car les

classements multiples correspondent au cas corrélation 0 et le classement commun à corrélation 1.

Il ouvre également la voie à l’étude de problèmes de bris d’égalité avec une corrélation intermédiaire

entre 0 et 1, ou même avec une corélation négative.
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Conclusion

Je montre dans cette thèse que les inégalités entre groupes arrivent systématiquement si on se

contente de chercher un appariement maximum ou stable (suivant le problème étudié) sans prêter

attention à l’équité. En revanche, je montre également qu’il existe souvent des appariements qui

sont à la fois efficaces et équitables, ou dans le pire des cas qu’il existe un appariement équitable

proche de l’optimum, et qu’il n’y a donc souvent pas de compromis à faire entre équité et efficac-

ité.

Les directions à explorer pour approfondir ce travail sont nombreuses. Les plus importantes

semblent être:

• intégrer des notions d’équité intersectionnelle, c’est à dire la possibilité que certaines per-

sonnes appartiennent à plusieurs groupes, ce qui rend l’analyse des questions d’équité plus

complexe;

• étendre les résultats du modèle avec préfférences à un autre appariement que l’appariement

stable, nottament celui obtenu par l’algorithme Top Trading Cycles, qui est similaire par

certains aspects;

• étudier les variantes dynamiques des deux modèles étudiés, c’est à dire le ,cas où les arrâtes

du graphe apparaissent séquentiellement et des décisions doivent être prises à chaque pas

de temps sans connaitre le graphe entièrement.

Enfin, puisque les inégalités dans les problèmes d’appariement viennent d’inégalités présentes à

tous les niveaux de la société, leur prise en compte leur mitigation ne peut pas venir uniquement

de moodèles mathématiques ou d’algorithmes, mais doit émaner de décisions collectives, éclairées

d’une part par des analyses théoriques comme celle présentée dans cette thèse mais aussi par d’autres

champs de recherche comme la sociologie ou l’économie empirique.
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